Package list-thm: Properties of list types

Information

namelist-thm
version1.51
descriptionProperties of list types
authorJoe Leslie-Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2014-06-12
requiresbool
list-def
natural
pair
showData.Bool
Data.List
Data.Pair
Number.Natural

Files

Theorems

h t. ¬(h :: t = [])

l. l = [] h t. l = h :: t

h1 h2 t1 t2. h1 :: t1 = h2 :: t2 h1 = h2 t1 = t2

External Type Operators

External Constants

Assumptions

¬

¬

bit0 0 = 0

p. p

(¬) = λp. p

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

t. ¬¬t t

t. t

t. t t

t. t t

t. t

n. 0 + n = n

t. ( t) ¬t

t. (t ) ¬t

t. t ¬t

n. bit1 n = suc (bit0 n)

() = λp q. p q p

t. (t ) (t )

n. bit0 (suc n) = suc (suc (bit0 n))

f y. (let x y in f x) = f y

m n. m + n = n + m

m n. ¬(m n) n < m

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

t1 t2. ¬(t1 t2) ¬t1 ¬t2

() = λp q. r. (p r) (q r) r

m n. m n n m m = n

m n. m < n d. n = m + suc d

p. p 0 (n. p n p (suc n)) n. p n

p. p [] (h t. p t p (h :: t)) l. p l

a b a' b'. (a, b) = (a', b') a = a' b = b'

b f. fn. fn [] = b h t. fn (h :: t) = f h t (fn t)