name | list-zipwith-def |
version | 1.0 |
description | list-zipwith-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ (∀f. Data.List.zipWith f Data.List.[] Data.List.[] = Data.List.[]) ∧
∀f h1 h2 t1 t2.
Data.List.zipWith f (Data.List.:: h1 t1) (Data.List.:: h2 t2) =
Data.List.:: (f h1 h2) (Data.List.zipWith f t1 t2)
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. Data.List.tail (Data.List.:: h t) = t
⊦ ∀t h. Data.List.head (Data.List.:: h t) = h
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀NIL' CONS'.
∃fn.
fn Data.List.[] = NIL' ∧
∀a0 a1. fn (Data.List.:: a0 a1) = CONS' a0 a1 (fn a1)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)