Package list-zipwith-def: list-zipwith-def
Information
name | list-zipwith-def |
version | 1.14 |
description | list-zipwith-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball list-zipwith-def-1.14.tgz
- Theory file list-zipwith-def.thy (included in the package tarball)
Defined Constant
- Data
- List
- Data.List.zipWith
- List
Theorem
⊦ (∀f. Data.List.zipWith f Data.List.[] Data.List.[] = Data.List.[]) ∧
∀f h1 h2 t1 t2.
Data.List.length t1 = Data.List.length t2 ⇒
Data.List.zipWith f (Data.List.:: h1 t1) (Data.List.:: h2 t2) =
Data.List.:: (f h1 h2) (Data.List.zipWith f t1 t2)
Input Type Operators
- →
- bool
- Data
- List
- Data.List.list
- List
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- F
- T
- List
- Data.List.::
- Data.List.[]
- Data.List.head
- Data.List.length
- Data.List.tail
- Bool
Assumptions
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀h t. Data.List.head (Data.List.:: h t) = h
⊦ ∀h t. Data.List.tail (Data.List.:: h t) = t
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀NIL' CONS'.
∃fn.
fn Data.List.[] = NIL' ∧
∀a0 a1. fn (Data.List.:: a0 a1) = CONS' a0 a1 (fn a1)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)