Package modular-equiv: Definitions and theorems about modular equivalence

Information

namemodular-equiv
version1.0
description Definitions and theorems about modular equivalence
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Number.Natural

Files

Defined Constant

Theorems

x. Number.Modular.equivalent x x

x y.
    Number.Modular.equivalent x y
    x mod Number.Modular.modulus = y mod Number.Modular.modulus

x y z.
    Number.Modular.equivalent x y Number.Modular.equivalent y z
    Number.Modular.equivalent x z

x y.
    Number.Modular.equivalent x = Number.Modular.equivalent y
    x mod Number.Modular.modulus = y mod Number.Modular.modulus

x y.
    x < Number.Modular.modulus y < Number.Modular.modulus
    Number.Modular.equivalent x = Number.Modular.equivalent y x = y

x1 x2 y1 y2.
    Number.Modular.equivalent x1 x2 Number.Modular.equivalent y1 y2
    Number.Modular.equivalent (x1 * y1) (x2 * y2)

x1 x2 y1 y2.
    Number.Modular.equivalent x1 x2 Number.Modular.equivalent y1 y2
    Number.Modular.equivalent (x1 + y1) (x2 + y2)

Input Type Operators

Input Constants

Assumptions

T

t. (x. t) t

() = λP. P = λx. T

x. x = x T

() = λp q. p q p

n. n < Number.Modular.modulus n mod Number.Modular.modulus = n

() = λp q. (λf. f p q) = λf. f T T

f g. f = g x. f x = g x

m n.
    m mod Number.Modular.modulus * (n mod Number.Modular.modulus) mod
    Number.Modular.modulus = m * n mod Number.Modular.modulus

m n.
    (m mod Number.Modular.modulus + n mod Number.Modular.modulus) mod
    Number.Modular.modulus = (m + n) mod Number.Modular.modulus

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)