name | modular-equiv-thm |
version | 1.0 |
description | modular-equiv-thm |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀x. Number.Modular.equivalent x x
⊦ ∀x y z.
Number.Modular.equivalent x y ∧ Number.Modular.equivalent y z ⇒
Number.Modular.equivalent x z
⊦ ∀x y.
Number.Modular.equivalent x = Number.Modular.equivalent y ⇔
Number.Natural.mod x Number.Modular.modulus =
Number.Natural.mod y Number.Modular.modulus
⊦ ∀x y.
Number.Natural.< x Number.Modular.modulus ∧
Number.Natural.< y Number.Modular.modulus ∧
Number.Modular.equivalent x = Number.Modular.equivalent y ⇒ x = y
⊦ ∀x1 x2 y1 y2.
Number.Modular.equivalent x1 x2 ∧ Number.Modular.equivalent y1 y2 ⇒
Number.Modular.equivalent (Number.Natural.* x1 y1)
(Number.Natural.* x2 y2)
⊦ ∀x1 x2 y1 y2.
Number.Modular.equivalent x1 x2 ∧ Number.Modular.equivalent y1 y2 ⇒
Number.Modular.equivalent (Number.Natural.+ x1 y1)
(Number.Natural.+ x2 y2)
⊦ T
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀n.
Number.Natural.< n Number.Modular.modulus ⇒
Number.Natural.mod n Number.Modular.modulus = n
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀f g. f = g ⇔ ∀x. f x = g x
⊦ ∀x y.
Number.Modular.equivalent x y ⇔
Number.Natural.mod x Number.Modular.modulus =
Number.Natural.mod y Number.Modular.modulus
⊦ ∀m n.
Number.Natural.mod
(Number.Natural.* (Number.Natural.mod m Number.Modular.modulus)
(Number.Natural.mod n Number.Modular.modulus))
Number.Modular.modulus =
Number.Natural.mod (Number.Natural.* m n) Number.Modular.modulus
⊦ ∀m n.
Number.Natural.mod
(Number.Natural.+ (Number.Natural.mod m Number.Modular.modulus)
(Number.Natural.mod n Number.Modular.modulus))
Number.Modular.modulus =
Number.Natural.mod (Number.Natural.+ m n) Number.Modular.modulus
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)