Package modular-equiv-thm: modular-equiv-thm

Information

namemodular-equiv-thm
version1.0
descriptionmodular-equiv-thm
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2011-02-19
showData.Bool

Files

Theorems

x. Number.Modular.equivalent x x

x y z.
    Number.Modular.equivalent x y Number.Modular.equivalent y z
    Number.Modular.equivalent x z

x y.
    Number.Modular.equivalent x = Number.Modular.equivalent y
    Number.Natural.mod x Number.Modular.modulus =
    Number.Natural.mod y Number.Modular.modulus

x y.
    Number.Natural.< x Number.Modular.modulus
    Number.Natural.< y Number.Modular.modulus
    Number.Modular.equivalent x = Number.Modular.equivalent y x = y

x1 x2 y1 y2.
    Number.Modular.equivalent x1 x2 Number.Modular.equivalent y1 y2
    Number.Modular.equivalent (Number.Natural.* x1 y1)
      (Number.Natural.* x2 y2)

x1 x2 y1 y2.
    Number.Modular.equivalent x1 x2 Number.Modular.equivalent y1 y2
    Number.Modular.equivalent (Number.Natural.+ x1 y1)
      (Number.Natural.+ x2 y2)

Input Type Operators

Input Constants

Assumptions

T

t. (x. t) t

() = λP. P = λx. T

x. x = x T

() = λp q. p q p

n.
    Number.Natural.< n Number.Modular.modulus
    Number.Natural.mod n Number.Modular.modulus = n

() = λp q. (λf. f p q) = λf. f T T

f g. f = g x. f x = g x

x y.
    Number.Modular.equivalent x y
    Number.Natural.mod x Number.Modular.modulus =
    Number.Natural.mod y Number.Modular.modulus

m n.
    Number.Natural.mod
      (Number.Natural.* (Number.Natural.mod m Number.Modular.modulus)
         (Number.Natural.mod n Number.Modular.modulus))
      Number.Modular.modulus =
    Number.Natural.mod (Number.Natural.* m n) Number.Modular.modulus

m n.
    Number.Natural.mod
      (Number.Natural.+ (Number.Natural.mod m Number.Modular.modulus)
         (Number.Natural.mod n Number.Modular.modulus))
      Number.Modular.modulus =
    Number.Natural.mod (Number.Natural.+ m n) Number.Modular.modulus

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)