name | modular-thm |
version | 1.1 |
description | modular-thm |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2011-03-17 |
show | Data.Bool |
⊦ ∀x. Number.Natural.< (Number.Modular.toNatural x) Number.Modular.modulus
⊦ ∀x.
Number.Natural.div (Number.Modular.toNatural x)
Number.Modular.modulus = Number.Numeral.zero
⊦ ∀x y.
Number.Modular.< x y ⇔
Number.Natural.< (Number.Modular.toNatural x)
(Number.Modular.toNatural y)
⊦ ∀x y. Number.Modular.toNatural x = Number.Modular.toNatural y ⇒ x = y
⊦ ∀x y.
Number.Modular.toNatural (Number.Modular.+ x y) =
Number.Natural.mod
(Number.Natural.+ (Number.Modular.toNatural x)
(Number.Modular.toNatural y)) Number.Modular.modulus
⊦ ∀x y.
Number.Modular.fromNatural x = Number.Modular.fromNatural y ⇔
Number.Natural.mod x Number.Modular.modulus =
Number.Natural.mod y Number.Modular.modulus
⊦ T
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀x. Number.Modular.fromNatural (Number.Modular.toNatural x) = x
⊦ ∀n.
Number.Natural.< (Number.Natural.mod n Number.Modular.modulus)
Number.Modular.modulus
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀x.
Number.Modular.toNatural (Number.Modular.fromNatural x) =
Number.Natural.mod x Number.Modular.modulus
⊦ ∀x y. Number.Modular.< x y ⇔ ¬Number.Modular.≤ y x
⊦ ∀m n. ¬Number.Natural.≤ m n ⇔ Number.Natural.< n m
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀x y.
Number.Modular.≤ x y ⇔
Number.Natural.≤ (Number.Modular.toNatural x)
(Number.Modular.toNatural y)
⊦ ∀m n. Number.Natural.< m n ⇒ Number.Natural.div m n = Number.Numeral.zero
⊦ ∀x1 y1.
Number.Modular.fromNatural (Number.Natural.+ x1 y1) =
Number.Modular.+ (Number.Modular.fromNatural x1)
(Number.Modular.fromNatural y1)