Package natural-bits: Natural number to bit-list conversions
Information
name | natural-bits |
version | 1.12 |
description | Natural number to bit-list conversions |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
requires | bool function list natural pair probability relation |
show | Data.Bool Data.List Data.Pair Function Number.Natural Probability.Random |
Files
- Package tarball natural-bits-1.12.tgz
- Theory file natural-bits.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- Bits
- Bits.bit
- Bits.fromNatural
- Bits.normal
- Bits.toNatural
- Bits.width
- Uniform
- Uniform.fromRandom
- Uniform.fromRandom.loop
- Uniform.fromRandom
- Bits
- Natural
Theorems
⊦ Bits.normal []
⊦ Bits.toNatural [] = 0
⊦ Bits.width 0 = 0
⊦ 0 = []
⊦ ∀n. Bits.normal (Bits.fromNatural n)
⊦ ∀i. ¬Bits.bit 0 i
⊦ ∀n. Bits.toNatural (Bits.fromNatural n) = n
⊦ 1 = ⊤ :: []
⊦ ∀n. Bits.bit n 0 ⇔ odd n
⊦ ∀n. length (Bits.fromNatural n) = Bits.width n
⊦ ∀l. Bits.width (Bits.toNatural l) ≤ length l
⊦ ∀n. n < 2 ↑ Bits.width n
⊦ ∀n. Bits.fromNatural n = [] ⇔ n = 0
⊦ ∀l. Bits.normal l ⇔ null l ∨ last l
⊦ ∀l. Bits.normal l ⇔ Bits.fromNatural (Bits.toNatural l) = l
⊦ ∀l. Bits.normal l ⇔ Bits.width (Bits.toNatural l) = length l
⊦ ∀l. Bits.toNatural l < 2 ↑ length l
⊦ ∀n. Bits.fromNatural n = map (Bits.bit n) (interval 0 (Bits.width n))
⊦ ∀n. Bits.bit (n div 2) = Bits.bit n ∘ suc
⊦ ∀m. Bits.width (2 ↑ m - 1) = m
⊦ ∀h t. Bits.toNatural (h :: t) div 2 = Bits.toNatural t
⊦ ∀n i. Bits.bit n i ⇔ odd (n div 2 ↑ i)
⊦ ∀n i. Bits.bit n (suc i) ⇔ Bits.bit (n div 2) i
⊦ ∀l i. Bits.bit (Bits.toNatural l) i ⇔ i < length l ∧ nth l i
⊦ ∀n. Bits.width n = if n = 0 then 0 else log 2 n + 1
⊦ ∀n. Bits.width n = if n = 0 then 0 else Bits.width (n div 2) + 1
⊦ ∀n.
Bits.fromNatural n =
if n = 0 then [] else odd n :: Bits.fromNatural (n div 2)
⊦ ∀h t. Bits.toNatural (h :: t) = 2 * Bits.toNatural t + if h then 1 else 0
⊦ ∀n r.
Uniform.fromRandom n r =
let w ← Bits.width (n - 1) in
let (r1, r2) ← split r in
(Uniform.fromRandom.loop n w r1 mod n, r2)
⊦ ∀n w r.
Uniform.fromRandom.loop n w r =
let (l, r') ← bits w r in
let m ← Bits.toNatural l in
if m < n then m else Uniform.fromRandom.loop n w r'
Input Type Operators
- →
- bool
- Data
- List
- list
- Pair
- ×
- List
- Number
- Natural
- natural
- Natural
- Probability
- Random
- random
- Random
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- List
- ::
- []
- interval
- last
- length
- map
- nth
- null
- Pair
- ,
- Bool
- Function
- ∘
- Number
- Natural
- *
- +
- -
- <
- ≤
- ↑
- bit0
- bit1
- div
- even
- log
- mod
- odd
- suc
- zero
- Natural
- Probability
- Random
- bits
- split
- Random
Assumptions
⊦ ⊤
⊦ null []
⊦ ¬odd 0
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ length [] = 0
⊦ bit0 0 = 0
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ⊥ ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ ∀m. ¬(m < 0)
⊦ ∀n. 0 < suc n
⊦ ∀n. n < suc n
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. even n ∨ odd n
⊦ ∀n. 0 * n = 0
⊦ ∀m. m * 0 = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀n. n - n = 0
⊦ ∀m. interval m 0 = []
⊦ ∀f. map f [] = []
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. even (2 * n)
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀n. ¬odd n ⇔ even n
⊦ ∀m. m ↑ 0 = 1
⊦ ∀n. n div 1 = n
⊦ ∀h t. ¬null (h :: t)
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀n. odd (suc (2 * n))
⊦ ∀m. suc m = m + 1
⊦ ∀n. even (suc n) ⇔ ¬even n
⊦ ∀n. odd (suc n) ⇔ ¬odd n
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀n. suc n - 1 = n
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀h t. ¬(h :: t = [])
⊦ ∀m n. length (interval m n) = n
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀xy. ∃x y. xy = (x, y)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀h t. nth (h :: t) 0 = h
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. m * n = n * m
⊦ ∀f l. length (map f l) = length l
⊦ ∀n. 2 * n = n + n
⊦ ∀h t. length (h :: t) = suc (length t)
⊦ ∀m n. ¬(m < n ∧ n ≤ m)
⊦ ∀m n. ¬(m ≤ n ∧ n < m)
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ ∀m n. suc m ≤ n ⇔ m < n
⊦ ∀m. m = 0 ∨ ∃n. m = suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀n. even n ⇔ n mod 2 = 0
⊦ ∀n. ¬(n = 0) ⇒ 0 div n = 0
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. m < n ⇒ m div n = 0
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m < suc n ⇔ m < n
⊦ ∀m n. suc m ≤ suc n ⇔ m ≤ n
⊦ ∀m n. m + n = m ⇔ n = 0
⊦ ∀n. odd n ⇔ n mod 2 = 1
⊦ ∀f g x. (f ∘ g) x = f (g x)
⊦ ∀m n. even (m * n) ⇔ even m ∨ even n
⊦ ∀m n. even (m + n) ⇔ even m ⇔ even n
⊦ ∀m n. m ↑ suc n = m * m ↑ n
⊦ ∀m n. map suc (interval m n) = interval (suc m) n
⊦ ∀l. l = [] ∨ ∃h t. l = h :: t
⊦ ∀f g. (∀x. f x = g x) ⇔ f = g
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀h t. last (h :: t) = if null t then h else last t
⊦ ∀m n. m ≤ n ⇔ m < n ∨ m = n
⊦ ∀m n. odd (m + n) ⇔ ¬(odd m ⇔ odd n)
⊦ ∀m n. interval m (suc n) = m :: interval (suc m) n
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀f. ∃fn. ∀x y. fn (x, y) = f x y
⊦ ∀m n. ¬(m = 0) ⇒ m * n div m = n
⊦ ∀m n. ¬(m = 0) ⇒ m * n mod m = 0
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀x1 x2 l. last (x1 :: x2 :: l) = last (x2 :: l)
⊦ ∀t1 t2 t3. (t1 ∨ t2) ∨ t3 ⇔ t1 ∨ t2 ∨ t3
⊦ ∀m n p. m + p = n + p ⇔ m = n
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀f g l. map (f ∘ g) l = map f (map g l)
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀m n. m ≤ suc n ⇔ m = suc n ∨ m ≤ n
⊦ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀f h t. map f (h :: t) = f h :: map f t
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀m n. ¬(n = 0) ⇒ (m div n = 0 ⇔ m < n)
⊦ ∀m n. m ↑ n = 0 ⇔ m = 0 ∧ ¬(n = 0)
⊦ ∀m n i. i < n ⇒ nth (interval m n) i = m + i
⊦ ∀x n. x ↑ n = 1 ⇔ x = 1 ∨ n = 0
⊦ ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x
⊦ ∀m n. ¬(n = 0) ⇒ (m div n) * n + m mod n = m
⊦ ∀p. p [] ∧ (∀h t. p t ⇒ p (h :: t)) ⇒ ∀l. p l
⊦ ∀h t n. n < length t ⇒ nth (h :: t) (suc n) = nth t n
⊦ ∀m n p. m * n = m * p ⇔ m = 0 ∨ n = p
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀f l i. i < length l ⇒ nth (map f l) i = f (nth l i)
⊦ ∀m n p. m * n < m * p ⇔ ¬(m = 0) ∧ n < p
⊦ ∀k m. 1 < k ⇒ log k (k ↑ (m + 1) - 1) = m
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)
⊦ ∀m n p. ¬(n * p = 0) ⇒ m div n div p = m div n * p
⊦ ∀m n q r. m = q * n + r ∧ r < n ⇒ m div n = q
⊦ ∀m n q r. m = q * n + r ∧ r < n ⇒ m mod n = r
⊦ ∀k n. 1 < k ∧ ¬(n = 0) ⇒ n < k ↑ (log k n + 1)
⊦ ∀p. p 0 ∧ (∀n. ¬(n = 0) ∧ p (n div 2) ⇒ p n) ⇒ ∀n. p n
⊦ ∀l1 l2.
length l1 = length l2 ∧ (∀i. i < length l1 ⇒ nth l1 i = nth l2 i) ⇒
l1 = l2
⊦ ∀k n.
1 < k ∧ ¬(n = 0) ⇒ log k n = if n < k then 0 else log k (n div k) + 1
⊦ ∀x m n. x ↑ m ≤ x ↑ n ⇔ if x = 0 then m = 0 ⇒ n = 0 else x = 1 ∨ m ≤ n
⊦ ∀a b n.
¬(n = 0) ⇒
((a + b) mod n = a mod n + b mod n ⇔ (a + b) div n = a div n + b div n)