Package natural-bits: Natural number to bit-list conversions
Information
name | natural-bits |
version | 1.72 |
description | Natural number to bit-list conversions |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
homepage | http://opentheory.gilith.com/?pkg=natural-bits |
hol-light-int-file | hol-light.int |
hol-light-thm-file | hol-light.art |
haskell-name | opentheory-bits |
haskell-int-file | haskell.int |
haskell-src-file | haskell.art |
checksum | 730f13192ae8e303d63094590911d3947e2ce3ba |
requires | base probability |
show | Data.Bool Data.List Data.Pair Function Number.Natural Probability.Random |
Files
- Package tarball natural-bits-1.72.tgz
- Theory source file natural-bits.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- fromBool
- Bits
- Bits.and
- Bits.append
- Bits.bit
- Bits.bound
- Bits.compare
- Bits.cons
- Bits.fromList
- Bits.head
- Bits.normalList
- Bits.or
- Bits.shiftLeft
- Bits.shiftRight
- Bits.tail
- Bits.toList
- Bits.toVector
- Bits.width
- Uniform
- Uniform.random
- Uniform.random.loop
- Uniform.random
- Natural
Theorems
⊦ Bits.normalList []
⊦ ¬Bits.head 0
⊦ Bits.head 1
⊦ fromBool ⊥ = 0
⊦ Bits.fromList [] = 0
⊦ Bits.tail 0 = 0
⊦ Bits.width 0 = 0
⊦ Bits.toList 0 = []
⊦ ∀n. Bits.normalList (Bits.toList n)
⊦ ¬Bits.head 2
⊦ fromBool ⊤ = 1
⊦ Bits.tail 1 = 0
⊦ ∀i. ¬Bits.bit 0 i
⊦ Bits.width 1 = 1
⊦ ∀b. Bits.head (fromBool b) ⇔ b
⊦ ∀b. Bits.tail (fromBool b) = 0
⊦ ∀n. Bits.head n ⇔ odd n
⊦ ∀n. Bits.fromList (Bits.toList n) = n
⊦ ∀n. Bits.and 0 n = 0
⊦ ∀n. Bits.and n 0 = 0
⊦ ∀n. Bits.and n n = n
⊦ ∀n. Bits.append [] n = n
⊦ ∀k. Bits.bound 0 k = 0
⊦ ∀n. Bits.bound n 0 = 0
⊦ ∀n. Bits.or 0 n = n
⊦ ∀n. Bits.or n 0 = n
⊦ ∀n. Bits.or n n = n
⊦ ∀k. Bits.shiftLeft 0 k = 0
⊦ ∀n. Bits.shiftLeft n 0 = n
⊦ ∀k. Bits.shiftRight 0 k = 0
⊦ ∀n. Bits.shiftRight n 0 = n
⊦ ∀n. Bits.toVector n 0 = []
⊦ Bits.toList 1 = ⊤ :: []
⊦ ∀b. fromBool b < 2
⊦ ∀b. Bits.width (fromBool b) = fromBool b
⊦ ∀b. Bits.cons b 0 = fromBool b
⊦ ∀n. Bits.bit n 0 ⇔ Bits.head n
⊦ ∀n. length (Bits.toList n) = Bits.width n
⊦ ∀k. Bits.fromList (replicate ⊥ k) = 0
⊦ ∀n. Bits.bound n (Bits.width n) = n
⊦ ∀n. Bits.shiftRight n (Bits.width n) = 0
⊦ ∀l. Bits.fromList l = Bits.append l 0
⊦ ∀l. Bits.width (Bits.fromList l) ≤ length l
⊦ ∀m n. m ≤ Bits.or m n
⊦ ∀m n. n ≤ Bits.or m n
⊦ ∀m n. Bits.and m n ≤ m
⊦ ∀m n. Bits.and m n ≤ n
⊦ ∀n k. Bits.bound n k ≤ n
⊦ ∀b. fromBool b = 0 ⇔ ¬b
⊦ ∀b. Bits.fromList (b :: []) = fromBool b
⊦ ∀b. fromBool b = 1 ⇔ b
⊦ ∀n. ¬Bits.head (2 * n)
⊦ ∀n. Bits.tail n = Bits.shiftRight n 1
⊦ ∀n. Bits.toList n = Bits.toVector n (Bits.width n)
⊦ ∀n. Bits.head (suc n) ⇔ ¬Bits.head n
⊦ ∀k. Bits.toVector 0 k = replicate ⊥ k
⊦ ∀n. Bits.shiftRight n 1 = Bits.tail n
⊦ ∀n. Bits.cons (Bits.head n) (Bits.tail n) = n
⊦ ∀h t. Bits.head (Bits.cons h t) ⇔ h
⊦ ∀h t. Bits.tail (Bits.cons h t) = t
⊦ ∀n k. length (Bits.toVector n k) = k
⊦ ∀n k. Bits.width (Bits.bound n k) ≤ k
⊦ ∀b. fromBool b = if b then 1 else 0
⊦ ∀n. ∃h t. n = Bits.cons h t
⊦ ∀n. n < 2 ↑ Bits.width n
⊦ ∀n. Bits.tail n = n div 2
⊦ ∀n. Bits.bit (Bits.tail n) = Bits.bit n ∘ suc
⊦ ∀n. Bits.width n = 0 ⇔ n = 0
⊦ ∀n. Bits.toList n = [] ⇔ n = 0
⊦ ∀n. suc (Bits.cons ⊥ n) = Bits.cons ⊤ n
⊦ ∀n. Bits.bound n 1 = fromBool (Bits.head n)
⊦ ∀l. Bits.normalList l ⇔ null l ∨ last l
⊦ ∀l. Bits.normalList l ⇔ Bits.toList (Bits.fromList l) = l
⊦ ∀l. Bits.fromList l = 0 ⇔ all (¬) l
⊦ ∀m n. Bits.and m n = Bits.and n m
⊦ ∀m n. Bits.or m n = Bits.or n m
⊦ ∀m n. max m n ≤ Bits.or m n
⊦ ∀m n. Bits.and m n ≤ min m n
⊦ ∀n k. Bits.bound (Bits.shiftLeft n k) k = 0
⊦ ∀n k. Bits.shiftRight (Bits.bound n k) k = 0
⊦ ∀n k. Bits.shiftRight (Bits.shiftLeft n k) k = n
⊦ ∀b. fromBool b mod 2 = fromBool b
⊦ ∀n. fromBool (Bits.head n) = n mod 2
⊦ ∀n. Bits.cons ⊥ n = 2 * n
⊦ ∀n. suc (Bits.cons ⊤ n) = Bits.cons ⊥ (suc n)
⊦ ∀l. Bits.normalList l ⇔ Bits.width (Bits.fromList l) = length l
⊦ ∀l. Bits.fromList l < 2 ↑ length l
⊦ ∀h t. Bits.width (Bits.cons h t) ≤ suc (Bits.width t)
⊦ ∀n i. Bits.bit n i ⇔ Bits.head (Bits.shiftRight n i)
⊦ ∀n k. Bits.shiftRight n k = (Bits.tail ↑ k) n
⊦ ∀n i. Bits.bit n i ⇒ i < Bits.width n
⊦ ∀n k. Bits.fromList (Bits.toVector n k) = Bits.bound n k
⊦ ∀n. (∀i. ¬Bits.bit n i) ⇔ n = 0
⊦ ∀n. (∀i. ¬Bits.bit n i) ⇒ n = 0
⊦ ∀l n. Bits.append l n = foldr Bits.cons n l
⊦ ∀n. Bits.shiftLeft n 1 = 2 * n
⊦ ∀k. Bits.shiftLeft 1 k = 2 ↑ k
⊦ ∀k. Bits.width (Bits.shiftLeft 1 k) = k + 1
⊦ ∀b1 b2. fromBool b1 = fromBool b2 ⇔ b1 ⇔ b2
⊦ ∀h t. Bits.fromList (h :: t) = Bits.cons h (Bits.fromList t)
⊦ ∀n k. Bits.shiftLeft n k = (Bits.cons ⊥ ↑ k) n
⊦ ∀n1 n2. n1 ≤ n2 ⇒ Bits.width n1 ≤ Bits.width n2
⊦ ∀n i. Bits.bit n (suc i) ⇔ Bits.bit (Bits.tail n) i
⊦ ∀n k. Bits.shiftRight n (suc k) = Bits.tail (Bits.shiftRight n k)
⊦ ∀n k. Bits.shiftRight n (suc k) = Bits.shiftRight (Bits.tail n) k
⊦ ∀n k. Bits.width (Bits.shiftLeft n k) ≤ Bits.width n + k
⊦ ∀k n. Bits.shiftLeft n k = 0 ⇔ n = 0
⊦ ∀n k. Bits.bound (Bits.bound n k) k = Bits.bound n k
⊦ ∀n k. Bits.toVector (Bits.bound n k) k = Bits.toVector n k
⊦ ∀k. Bits.width (2 ↑ k - 1) = k
⊦ ∀b1 b2. fromBool b1 < fromBool b2 ⇔ ¬b1 ∧ b2
⊦ ∀b1 b2. fromBool b1 ≤ fromBool b2 ⇔ ¬b1 ∨ b2
⊦ ∀b k. Bits.normalList (replicate b k) ⇔ k = 0 ∨ b
⊦ ∀q n. Bits.compare q n 0 ⇔ q ∧ n = 0
⊦ ∀n k. Bits.toVector n k = map (Bits.bit n) (interval 0 k)
⊦ ∀n1 n2. Bits.head (n1 * n2) ⇔ Bits.head n1 ∧ Bits.head n2
⊦ ∀m n. Bits.head (Bits.and m n) ⇔ Bits.head m ∧ Bits.head n
⊦ ∀m n. Bits.head (Bits.or m n) ⇔ Bits.head m ∨ Bits.head n
⊦ ∀m n. Bits.tail (Bits.and m n) = Bits.and (Bits.tail m) (Bits.tail n)
⊦ ∀m n. Bits.tail (Bits.or m n) = Bits.or (Bits.tail m) (Bits.tail n)
⊦ ∀m n. Bits.width (max m n) = max (Bits.width m) (Bits.width n)
⊦ ∀n k. Bits.shiftLeft n (suc k) = Bits.cons ⊥ (Bits.shiftLeft n k)
⊦ ∀n k. Bits.shiftLeft n (suc k) = Bits.shiftLeft (Bits.cons ⊥ n) k
⊦ ∀m n. Bits.width (m * n) ≤ Bits.width m + Bits.width n
⊦ ∀n k. Bits.bound n k = n ⇔ Bits.width n ≤ k
⊦ ∀n k. Bits.shiftRight n k = 0 ⇔ Bits.width n ≤ k
⊦ ∀n i. i < n ⇒ ∃r. Uniform.random n r = i
⊦ ∀n. Bits.cons ⊤ n = 1 + 2 * n
⊦ ∀q n. Bits.compare q 0 n ⇔ q ∨ ¬(n = 0)
⊦ ∀h t. Bits.normalList (h :: t) ⇔ if null t then h else Bits.normalList t
⊦ ∀n k. Bits.bound n k = n - Bits.shiftLeft (Bits.shiftRight n k) k
⊦ ∀n k. Bits.bound n k = n mod 2 ↑ k
⊦ ∀n k. Bits.shiftLeft n k = 2 ↑ k * n
⊦ ∀n k. Bits.shiftRight n k = n div 2 ↑ k
⊦ ∀n1 n2. Bits.head (n1 + n2) ⇔ ¬(Bits.head n1 ⇔ Bits.head n2)
⊦ ∀n1 n2. Bits.tail (n1 + Bits.cons ⊥ n2) = Bits.tail n1 + n2
⊦ ∀m n. Bits.or m n + Bits.and m n = m + n
⊦ ∀n k. Bits.bound n k + Bits.shiftLeft (Bits.shiftRight n k) k = n
⊦ ∀n.
Uniform.random n =
λr. let w ← Bits.width (n - 1) in Uniform.random.loop n w r
⊦ ∀k. Bits.fromList (replicate ⊤ k) = 2 ↑ k - 1
⊦ ∀h t. Bits.cons h t = fromBool h + 2 * t
⊦ ∀h t. Bits.cons h t = 0 ⇔ ¬h ∧ t = 0
⊦ ∀h t. Bits.cons h t = 1 ⇔ h ∧ t = 0
⊦ ∀n k. Bits.width n ≤ k ⇔ n < 2 ↑ k
⊦ ∀n k.
Bits.bound n (suc k) =
Bits.cons (Bits.head n) (Bits.bound (Bits.tail n) k)
⊦ ∀n k.
Bits.toVector n (suc k) = Bits.head n :: Bits.toVector (Bits.tail n) k
⊦ ∀h t1 t2. Bits.cons h t1 < Bits.cons h t2 ⇔ t1 < t2
⊦ ∀h t1 t2. Bits.cons h t1 ≤ Bits.cons h t2 ⇔ t1 ≤ t2
⊦ ∀h t n. Bits.append (h :: t) n = Bits.cons h (Bits.append t n)
⊦ ∀n k i. Bits.bit n (k + i) ⇔ Bits.bit (Bits.shiftRight n k) i
⊦ ∀n k1 k2.
Bits.shiftLeft n (k1 + k2) = Bits.shiftLeft (Bits.shiftLeft n k1) k2
⊦ ∀n k1 k2.
Bits.shiftRight n (k1 + k2) = Bits.shiftRight (Bits.shiftRight n k1) k2
⊦ ∀n j k. Bits.bound (Bits.bound n j) k = Bits.bound n (min j k)
⊦ ∀k n1 n2. Bits.shiftLeft (n1 * n2) k = n1 * Bits.shiftLeft n2 k
⊦ ∀k n1 n2. Bits.shiftLeft n1 k = Bits.shiftLeft n2 k ⇔ n1 = n2
⊦ ∀k n1 n2. Bits.shiftLeft n1 k ≤ Bits.shiftLeft n2 k ⇔ n1 ≤ n2
⊦ ∀n1 n2 k. Bits.bound (n1 + Bits.shiftLeft n2 k) k = Bits.bound n1 k
⊦ ∀m n. (∀i. Bits.bit m i ⇔ Bits.bit n i) ⇒ m = n
⊦ ∀n. Bits.width n = if n = 0 then 0 else Bits.width (Bits.tail n) + 1
⊦ ∀n.
Bits.toList n =
if n = 0 then [] else Bits.head n :: Bits.toList (Bits.tail n)
⊦ ∀h t. ¬(t = 0) ⇒ Bits.width (Bits.cons h t) = suc (Bits.width t)
⊦ ∀m n. Bits.width (m + n) ≤ max (Bits.width m) (Bits.width n) + 1
⊦ ∀m n. Bits.or m n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀l i. Bits.bit (Bits.fromList l) i ⇔ i < length l ∧ nth l i
⊦ ∀l k. k ≤ length l ⇒ Bits.toVector (Bits.fromList l) k = take k l
⊦ ∀l k. Bits.toVector (Bits.fromList l) (length l + k) = l @ replicate ⊥ k
⊦ ∀l1 l2.
Bits.fromList (l1 @ l2) =
Bits.fromList l1 + Bits.shiftLeft (Bits.fromList l2) (length l1)
⊦ ∀n r.
Uniform.random n r =
let w ← Bits.width (n - 1) in Uniform.random.loop n w r
⊦ ∀h1 h2 t1 t2. t1 < t2 ⇒ Bits.cons h1 t1 < Bits.cons h2 t2
⊦ ∀h t. Bits.fromList (h :: t) = 0 ⇔ ¬h ∧ Bits.fromList t = 0
⊦ ∀n k. ¬(n = 0) ⇒ Bits.width (Bits.shiftLeft n k) = Bits.width n + k
⊦ ∀n k. Bits.and n (2 ↑ k - 1) = Bits.bound n k
⊦ ∀h1 h2 t. Bits.cons h1 t < Bits.cons h2 t ⇔ fromBool h1 < fromBool h2
⊦ ∀h1 h2 t. Bits.cons h1 t ≤ Bits.cons h2 t ⇔ fromBool h1 ≤ fromBool h2
⊦ ∀q m n. Bits.compare q m n ⇔ if q then m ≤ n else m < n
⊦ ∀m n i. Bits.bit (Bits.and m n) i ⇔ Bits.bit m i ∧ Bits.bit n i
⊦ ∀n i k. Bits.bit (Bits.bound n k) i ⇔ i < k ∧ Bits.bit n i
⊦ ∀m n i. Bits.bit (Bits.or m n) i ⇔ Bits.bit m i ∨ Bits.bit n i
⊦ ∀m n k.
Bits.bound (Bits.and m n) k =
Bits.and (Bits.bound m k) (Bits.bound n k)
⊦ ∀m n k.
Bits.bound (Bits.or m n) k = Bits.or (Bits.bound m k) (Bits.bound n k)
⊦ ∀k n1 n2.
Bits.shiftLeft (n1 + n2) k = Bits.shiftLeft n1 k + Bits.shiftLeft n2 k
⊦ ∀n j k. Bits.width n ≤ j + k ⇒ Bits.width (Bits.shiftRight n k) ≤ j
⊦ ∀n j k.
Bits.bound (Bits.shiftLeft n k) (j + k) =
Bits.shiftLeft (Bits.bound n j) k
⊦ ∀n1 n2 k.
Bits.shiftRight (n1 + Bits.shiftLeft n2 k) k =
Bits.shiftRight n1 k + n2
⊦ ∀n j k.
Bits.shiftRight (Bits.bound n (j + k)) k =
Bits.bound (Bits.shiftRight n k) j
⊦ ∀n. Bits.width n = if n = 0 then 0 else log 2 n + 1
⊦ ∀n k.
Bits.bound n (suc k) =
Bits.bound n k + Bits.shiftLeft (fromBool (Bits.bit n k)) k
⊦ ∀l k.
Bits.bound (Bits.fromList l) k =
Bits.fromList (if length l ≤ k then l else take k l)
⊦ ∀l k.
Bits.shiftRight (Bits.fromList l) k =
if length l ≤ k then 0 else Bits.fromList (drop k l)
⊦ ∀m n k.
Bits.toVector (Bits.and m n) k =
zipWith (∧) (Bits.toVector m k) (Bits.toVector n k)
⊦ ∀m n k.
Bits.toVector (Bits.or m n) k =
zipWith (∨) (Bits.toVector m k) (Bits.toVector n k)
⊦ ∀n i. i < n ⇒ ∃r. Uniform.random.loop n (Bits.width (n - 1)) r = i
⊦ ∀p. p 0 ∧ (∀h t. p t ⇒ p (Bits.cons h t)) ⇒ ∀n. p n
⊦ ∀n k i. Bits.bit (Bits.shiftLeft n k) i ⇔ k ≤ i ∧ Bits.bit n (i - k)
⊦ ∀m n k.
Bits.bound (Bits.bound m k * Bits.bound n k) k = Bits.bound (m * n) k
⊦ ∀m n k.
Bits.bound (Bits.bound m k + Bits.bound n k) k = Bits.bound (m + n) k
⊦ ∀h1 h2 t1 t2. Bits.cons h1 t1 = Bits.cons h2 t2 ⇔ (h1 ⇔ h2) ∧ t1 = t2
⊦ ∀h1 h2 t1 t2.
Bits.and (Bits.cons h1 t1) (Bits.cons h2 t2) =
Bits.cons (h1 ∧ h2) (Bits.and t1 t2)
⊦ ∀h1 h2 t1 t2.
Bits.or (Bits.cons h1 t1) (Bits.cons h2 t2) =
Bits.cons (h1 ∨ h2) (Bits.or t1 t2)
⊦ ∀m n p k. m = n + Bits.shiftLeft p k ⇒ Bits.bound m k = Bits.bound n k
⊦ ∀p. p 0 ∧ (∀n. ¬(n = 0) ∧ p (Bits.tail n) ⇒ p n) ⇒ ∀n. p n
⊦ ∀n k.
Bits.toVector n k =
if k = 0 then []
else Bits.head n :: Bits.toVector (Bits.tail n) (k - 1)
⊦ ∀m n j k.
Bits.width (Bits.bound m k + Bits.shiftLeft n k) ≤ j + k ⇔
Bits.width n ≤ j
⊦ ∀m n.
Bits.and m n =
Bits.fromList
(map (λi. Bits.bit m i ∧ Bits.bit n i)
(interval 0 (min (Bits.width m) (Bits.width n))))
⊦ ∀m n.
Bits.or m n =
Bits.fromList
(map (λi. Bits.bit m i ∨ Bits.bit n i)
(interval 0 (max (Bits.width m) (Bits.width n))))
⊦ ∀l k.
Bits.toVector (Bits.fromList l) k =
if length l ≤ k then l @ replicate ⊥ (k - length l) else take k l
⊦ ∀h1 h2 t1 t2.
Bits.cons h1 t1 < Bits.cons h2 t2 ⇔
t1 < t2 ∨ t1 = t2 ∧ fromBool h1 < fromBool h2
⊦ ∀h1 h2 t1 t2.
Bits.cons h1 t1 ≤ Bits.cons h2 t2 ⇔
t1 < t2 ∨ t1 = t2 ∧ fromBool h1 ≤ fromBool h2
⊦ ∀q h1 h2 t1 t2.
Bits.compare q (Bits.cons h1 t1) (Bits.cons h2 t2) ⇔
Bits.compare (¬h1 ∧ h2 ∨ ¬(h1 ∧ ¬h2) ∧ q) t1 t2
⊦ ∀n w r.
Uniform.random.loop n w r =
let (r1, r2) ← split r in
let l ← bits w r1 in
let m ← Bits.fromList l in
if m < n then m else Uniform.random.loop n w r2
External Type Operators
- →
- bool
- Data
- List
- list
- Pair
- ×
- List
- Number
- Natural
- natural
- Natural
- Probability
- Random
- random
- Random
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- cond
- ⊥
- ⊤
- List
- ::
- @
- []
- all
- drop
- foldr
- interval
- last
- length
- map
- nth
- null
- replicate
- take
- zipWith
- Pair
- ,
- Bool
- Function
- ↑
- id
- ∘
- Number
- Natural
- *
- +
- -
- <
- ≤
- ↑
- bit0
- bit1
- div
- even
- log
- max
- min
- mod
- odd
- suc
- zero
- Natural
- Probability
- Random
- bits
- split
- Random
Assumptions
⊦ ⊤
⊦ null []
⊦ ¬odd 0
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ length [] = 0
⊦ bit0 0 = 0
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ∀n. n ≤ n
⊦ ∀p. all p []
⊦ ⊥ ⇔ ∀p. p
⊦ ∀x. id x = x
⊦ ∀t. t ∨ ¬t
⊦ ∀m. ¬(m < 0)
⊦ ∀n. 0 < suc n
⊦ ∀n. n < suc n
⊦ ∀n. n ≤ suc n
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀x. replicate x 0 = []
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊥ ⇔ ⊥
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. t ∧ t ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀t. t ∨ t ⇔ t
⊦ ∀n. ¬(suc n = 0)
⊦ ∀m. m * 0 = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀n. min n n = n
⊦ ∀m. interval m 0 = []
⊦ ∀l. [] @ l = l
⊦ ∀l. drop 0 l = l
⊦ ∀l. take 0 l = []
⊦ ∀f. f ↑ 0 = id
⊦ ∀f. map f [] = []
⊦ ∀x. last (x :: []) = x
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀n. ¬odd n ⇔ even n
⊦ ∀m. m ↑ 0 = 1
⊦ ∀m. m * 1 = m
⊦ ∀n. n ↑ 1 = n
⊦ ∀n. n div 1 = n
⊦ ∀m. 1 * m = m
⊦ ∀l. null l ⇔ l = []
⊦ ∀f. zipWith f [] [] = []
⊦ ∀h t. ¬null (h :: t)
⊦ ∀m n. m ≤ m + n
⊦ ∀m n. m ≤ max m n
⊦ ∀m n. n ≤ m + n
⊦ ∀m n. n ≤ max m n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀m. suc m = m + 1
⊦ ∀n. odd (suc n) ⇔ ¬odd n
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀n. suc n - 1 = n
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀x n. length (replicate x n) = n
⊦ ∀h t. ¬(h :: t = [])
⊦ ∀b t. (if b then t else t) = t
⊦ ∀m n. length (interval m n) = n
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀f b. foldr f b [] = b
⊦ ∀n. 0 < n ⇔ ¬(n = 0)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀x. ∃a b. x = (a, b)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀h t. nth (h :: t) 0 = h
⊦ ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m + n = n + m
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀m n. m + n - m = n
⊦ ∀m n. m + n - n = m
⊦ ∀f l. length (map f l) = length l
⊦ ∀n. 2 * n = n + n
⊦ ∀r1 r2. ∃r. split r = (r1, r2)
⊦ ∀x n. null (replicate x n) ⇔ n = 0
⊦ ∀h t. length (h :: t) = suc (length t)
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ ∀m n. m < suc n ⇔ m ≤ n
⊦ ∀m n. suc m ≤ n ⇔ m < n
⊦ ∀m. m = 0 ∨ ∃n. m = suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀n. even n ⇔ n mod 2 = 0
⊦ ∀n. ¬(n = 0) ⇒ 0 div n = 0
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀t1 t2. ¬t1 ⇒ ¬t2 ⇔ t2 ⇒ t1
⊦ ∀m n. m < n ⇒ m div n = 0
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m < suc n ⇔ m < n
⊦ ∀m n. suc m ≤ suc n ⇔ m ≤ n
⊦ ∀m n. m + n = m ⇔ n = 0
⊦ ∀m n. m + n = n ⇔ m = 0
⊦ ∀n. odd n ⇔ n mod 2 = 1
⊦ ∀k. 1 < k ⇒ log k 1 = 0
⊦ ∀f g x. (f ∘ g) x = f (g x)
⊦ ∀x n. replicate x (suc n) = x :: replicate x n
⊦ ∀t1 t2. ¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2
⊦ ∀t1 t2. ¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2
⊦ ∀m n. max m n = if m ≤ n then n else m
⊦ ∀m n. min m n = if m ≤ n then m else n
⊦ ∀m n. odd (m * n) ⇔ odd m ∧ odd n
⊦ ∀m n. m * suc n = m + m * n
⊦ ∀m n. m ↑ suc n = m * m ↑ n
⊦ ∀m n. map suc (interval m n) = interval (suc m) n
⊦ ∀l1 l2. length (l1 @ l2) = length l1 + length l2
⊦ ∀f n. f ↑ suc n = f ∘ f ↑ n
⊦ ∀f n. f ↑ suc n = f ↑ n ∘ f
⊦ ∀m n. m ≤ n ⇔ ∃d. n = m + d
⊦ ∀f g. (∀x. f x = g x) ⇔ f = g
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. m ≤ n ⇔ m < n ∨ m = n
⊦ ∀m n. odd (m + n) ⇔ ¬(odd m ⇔ odd n)
⊦ ∀m n. interval m (suc n) = m :: interval (suc m) n
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀f. ∃fn. ∀a b. fn (a, b) = f a b
⊦ ∀m n. m < n ⇔ ∃d. n = m + suc d
⊦ ∀n l. length l = n ⇒ ∃r. bits n r = l
⊦ ∀p. (∀x y. p x y) ⇔ ∀y x. p x y
⊦ ∀m n. m < n ⇔ m ≤ n ∧ ¬(m = n)
⊦ ∀m n. ¬(m = 0) ⇒ m * n div m = n
⊦ ∀m n. ¬(m = 0) ⇒ m * n mod m = 0
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀x1 x2 l. last (x1 :: x2 :: l) = last (x2 :: l)
⊦ ∀x n i. i < n ⇒ nth (replicate x n) i = x
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + (n + p) = m + n + p
⊦ ∀m n p. m + n = m + p ⇔ n = p
⊦ ∀p m n. m + p = n + p ⇔ m = n
⊦ ∀m n p. n + m < p + m ⇔ n < p
⊦ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
⊦ ∀m n p. n + m ≤ p + m ⇔ n ≤ p
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀l h t. (h :: t) @ l = h :: t @ l
⊦ ∀f g l. map (f ∘ g) l = map f (map g l)
⊦ ∀r. (∀x. ∃y. r x y) ⇔ ∃f. ∀x. r x (f x)
⊦ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
⊦ ∀f h t. map f (h :: t) = f h :: map f t
⊦ ∀p h t. all p (h :: t) ⇔ p h ∧ all p t
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀n m. ¬(n = 0) ⇒ m mod n mod n = m mod n
⊦ ∀m n. ¬(n = 0) ⇒ (m div n = 0 ⇔ m < n)
⊦ ∀m n. m ↑ n = 0 ⇔ m = 0 ∧ ¬(n = 0)
⊦ ∀m n i. i < n ⇒ nth (interval m n) i = m + i
⊦ ∀m n p. m < min n p ⇔ m < n ∧ m < p
⊦ ∀m n p. m ≤ min n p ⇔ m ≤ n ∧ m ≤ p
⊦ ∀m n p. max n p ≤ m ⇔ n ≤ m ∧ p ≤ m
⊦ ∀m n p. m * (n + p) = m * n + m * p
⊦ ∀m n p. (m + n) * p = m * p + n * p
⊦ ∀f m n. f ↑ (m + n) = f ↑ m ∘ f ↑ n
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n
⊦ ∀m n. ¬(n = 0) ⇒ (m div n) * n + m mod n = m
⊦ ∀p. p [] ∧ (∀h t. p t ⇒ p (h :: t)) ⇒ ∀l. p l
⊦ ∀f b h t. foldr f b (h :: t) = f h (foldr f b t)
⊦ ∀h t n. n < length t ⇒ nth (h :: t) (suc n) = nth t n
⊦ ∀n h t. n ≤ length t ⇒ drop (suc n) (h :: t) = drop n t
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀f l i. i < length l ⇒ nth (map f l) i = f (nth l i)
⊦ ∀k m n. 1 < k ∧ k ↑ m ≤ n ⇒ m ≤ log k n
⊦ ∀h1 h2 t1 t2. h1 :: t1 = h2 :: t2 ⇔ h1 = h2 ∧ t1 = t2
⊦ ∀m n p q. m ≤ p ∧ n ≤ q ⇒ m + n ≤ p + q
⊦ ∀n h t. n ≤ length t ⇒ take (suc n) (h :: t) = h :: take n t
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀m n p. ¬(n * p = 0) ⇒ m div n div p = m div n * p
⊦ ∀k n. 1 < k ∧ ¬(n = 0) ⇒ n < k ↑ (log k n + 1)
⊦ ∀n a b. ¬(n = 0) ⇒ (a mod n + b mod n) mod n = (a + b) mod n
⊦ ∀k n1 n2. 1 < k ∧ ¬(n1 = 0) ∧ n1 ≤ n2 ⇒ log k n1 ≤ log k n2
⊦ ∀k m n. 1 < k ∧ ¬(n = 0) ∧ n < k ↑ m ⇒ log k n < m
⊦ ∀l1 l2.
length l1 = length l2 ∧ (∀i. i < length l1 ⇒ nth l1 i = nth l2 i) ⇒
l1 = l2
⊦ ∀k p. 1 < k ∧ p 0 ∧ (∀n. ¬(n = 0) ∧ p (n div k) ⇒ p n) ⇒ ∀n. p n
⊦ ∀k n.
1 < k ∧ ¬(n = 0) ⇒ log k n = if n < k then 0 else log k (n div k) + 1
⊦ ∀f h1 h2 t1 t2.
length t1 = length t2 ⇒
zipWith f (h1 :: t1) (h2 :: t2) = f h1 h2 :: zipWith f t1 t2
⊦ ∀x m n. x ↑ m ≤ x ↑ n ⇔ if x = 0 then m = 0 ⇒ n = 0 else x = 1 ∨ m ≤ n
⊦ ∀k n1 n2.
1 < k ∧ ¬(n1 = 0) ∧ ¬(n2 = 0) ⇒
log k (n1 * n2) ≤ log k n1 + (log k n2 + 1)
⊦ ∀a b n.
¬(n = 0) ⇒
((a + b) mod n = a mod n + b mod n ⇔ (a + b) div n = a div n + b div n)