Package natural-distance-def: Definition of natural number distance
Information
name | natural-distance-def |
version | 1.37 |
description | Definition of natural number distance |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2012-08-06 |
requires | bool natural-add natural-order |
show | Data.Bool Number.Natural |
Files
- Package tarball natural-distance-def-1.37.tgz
- Theory file natural-distance-def.thy (included in the package tarball)
Defined Constant
- Number
- Natural
- distance
- Natural
Theorem
⊦ ∀m n. distance m n = if m ≤ n then n - m else m - n
Input Type Operators
- →
- bool
- Number
- Natural
- natural
- Natural
Input Constants
- =
- Data
- Bool
- ∀
- cond
- ⊤
- Bool
- Number
- Natural
- -
- ≤
- Natural
Assumptions
⊦ ⊤
⊦ (∀) = λp. p = λx. ⊤