Package natural-div-def: Definition of natural number division

Information

namenatural-div-def
version1.19
descriptionDefinition of natural number division
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-11-27
requiresbool
natural-thm
natural-order
natural-add
natural-mult
showData.Bool
Number.Natural

Files

Defined Constants

Theorems

even 0 T

odd 0 F

n. even (suc n) ¬even n

n. odd (suc n) ¬odd n

m n. ¬(n = 0) m mod n < n

m n. ¬(n = 0) m div n * n + m mod n = m

Input Type Operators

Input Constants

Assumptions

T

¬F T

¬T F

t. t t

F p. p

t. t ¬t

(¬) = λp. p F

() = λP. P ((select) P)

a. x. x = a

t. (λx. t x) = t

() = λp. p = λx. T

t. ¬¬t t

t. (T t) t

t. F t F

t. T t t

t. t T t

t. F t T

t. T t t

t. t T T

t. F t t

t. T t T

t. t F t

t. t T T

n. 0 * n = 0

n. 0 + n = n

t. (F t) ¬t

t. t F ¬t

m. 1 * m = m

() = λp q. p q p

t. (t T) (t F)

m. m 0 m = 0

t1 t2. (if F then t1 else t2) = t2

t1 t2. (if T then t1 else t2) = t1

t1 t2. t1 t2 t2 t1

m n. ¬(m < n) n m

m n. ¬(m n) n < m

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

t1 t2. ¬(t1 t2) t1 ¬t2

m n. n < m + n 0 < m

m n. m n d. n = m + d

() = λp q. r. (p r) (q r) r

P Q. (x. P Q x) P x. Q x

P Q. P (x. Q x) x. P Q x

P Q. (x. P x) Q x. P x Q

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m + (n + p) = m + n + p

P. (x. y. P x y) y. x. P x (y x)

m n p. (m + n) * p = m * p + n * p

(∃!) = λP. () P x y. P x P y x = y

P Q. (x. P x Q x) (x. P x) x. Q x

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

P. (n. P n) n. P n m. m < n ¬P m