Package natural-div-mod: Definitions and theorems about natural number division

Information

namenatural-div-mod
version1.5
description Definitions and theorems about natural number division
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Number.Natural

Files

Defined Constants

Theorems

n. n div 1 = n

n. n mod 1 = 0

m n. n * (m div n) m

n. even n n mod 2 = 0

n. ¬(n = 0) 0 div n = 0

n. ¬(n = 0) 0 mod n = 0

m n. m < n m div n = 0

m n. m < n m mod n = m

n. odd n n mod 2 = 1

n. ¬(n = 0) n div n = 1

m n. ¬(n = 0) m mod n < n

m n. ¬(n = 0) m div n m

m n. ¬(n = 0) m mod n m

m n. ¬(m = 0) m * n div m = n

m n. ¬(m = 0) m * n mod m = 0

m n p. (m * n + p) mod n = p mod n

m n. ¬(n = 0) (m div n = 0 m < n)

m n. ¬(n = 0) m mod n mod n = m mod n

m n. ¬(n = 0) m div n * n + m mod n = m

a b n. ¬(a = 0) (n b div a a * n b)

m n p. ¬(p = 0) m * (n div p) m * n div p

m n p. ¬(p = 0) m n m div p n div p

m n p. ¬(p = 0) p m n div m n div p

a b n. ¬(a = 0) b a * n b div a n

m n. ¬(n = 0) (m mod n = 0 q. m = q * n)

m n p q. m = n + q * p m mod p = n mod p

m n p. ¬(n = 0) m * (p mod n) mod n = m * p mod n

m n p. ¬(n = 0) m mod n * p mod n = m * p mod n

m n p. ¬(n = 0) exp (m mod n) p mod n = exp m p mod n

m n p. ¬(m * p = 0) m * n div (m * p) = n div p

m n p. ¬(n * p = 0) m div n div p = m div (n * p)

m n p. ¬(n * p = 0) m mod (n * p) mod n = m mod n

m n p. ¬(p = 0) m + p n m div p < n div p

m n. (q. m = n * q) if n = 0 then m = 0 else m mod n = 0

m n q r. m = q * n + r r < n m div n = q

m n q r. m = q * n + r r < n m mod n = r

a b n. ¬(a = 0) (b div a n b < a * (n + 1))

m n p. ¬(n = 0) m mod n * (p mod n) mod n = m * p mod n

a b n. ¬(n = 0) (a mod n + b mod n) mod n = (a + b) mod n

m n p. ¬(m * p = 0) m * n mod (m * p) = m * (n mod p)

m n p. ¬(n * p = 0) m div n mod p = m mod (n * p) div n

m n q r. m = q * n + r r < n m div n = q m mod n = r

a b c d. ¬(b = 0) b * c < (a + 1) * d c div d a div b

a b c d. b * c < (a + 1) * d a * d < (c + 1) * b a div b = c div d

a b n.
    ¬(n = 0)
    ((a + b) mod n = a mod n + b mod n (a + b) div n = a div n + b div n)

Input Type Operators

Input Constants

Assumptions

T

n. 0 n

n. n n

F p. p

1 = suc 0

t. t ¬t

n. 0 < suc n

(~) = λp. p F

() = λP. P ((select) P)

a. x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

x. x = x T

n. ¬(suc n = 0)

2 = suc 1

n. ¬even n odd n

m n. m m + n

() = λp q. p q p

t. (t T) (t F)

m. suc m = m + 1

(¬T F) (¬F T)

n. 0 < n ¬(n = 0)

x y. x = y y = x

m n. m * n = n * m

m n. m + n = n + m

m n. m n n m

m n. ¬(m < n) n m

m n. ¬(m n) n < m

m n. m < suc n m n

m n. suc m n m < n

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

t1 t2. ¬(t1 t2) t1 ¬t2

m n. m < m + n 0 < n

m n. n < m + n 0 < m

n. even n m. n = 2 * m

m n. m n d. n = m + d

() = λp q. r. (p r) (q r) r

m n. m n n m m = n

P Q. (x. P Q x) P x. Q x

P Q. P (x. Q x) x. P Q x

P Q. (x. P x Q) (x. P x) Q

P Q. (x. P x Q) (x. P x) Q

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

x y z. x = y y = z x = z

t1 t2 t3. t1 t2 t3 (t1 t2) t3

m n p. m * (n * p) = m * n * p

m n p. m + (n + p) = m + n + p

m n p. m + n = m + p n = p

m n p. m + p = n + p m = n

m n p. m + n < m + p n < p

m n p. m + p n + p m n

m n p. m n n < p m < p

m n p. m n n p m p

P. (x. y. P x y) y. x. P x (y x)

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

m n. m * n = 0 m = 0 n = 0

P. P 0 (n. P n P (suc n)) n. P n

(t. ¬¬t t) (¬T F) (¬F T)

m n p. m * (n + p) = m * n + m * p

m n p. (m + n) * p = m * p + n * p

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

P. (n. P n) n. P n m. m < n ¬P m

m n p. m * n = m * p m = 0 n = p

m n p. m * p = n * p m = n p = 0

m n p. m * n m * p m = 0 n p

m n p. m * p n * p m n p = 0

m n p. m * n < m * p ¬(m = 0) n < p

m n p. m * p < n * p m < n ¬(p = 0)

A B C D. (B A) (C D) (A C) B D

m n p q. m p n q m + n p + q

(m. exp m 0 = 1) m n. exp m (suc n) = m * exp m n

P c x y. P (if c then x else y) (c P x) (¬c P y)

(m. m < 0 F) m n. m < suc n m = n m < n

t1 t2. (¬(t1 t2) ¬t1 ¬t2) (¬(t1 t2) ¬t1 ¬t2)

(m. m 0 m = 0) m n. m suc n m = suc n m n

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

m n p.
    m * n = n * m m * n * p = m * (n * p) m * (n * p) = n * (m * p)

m n p.
    m + n = n + m m + n + p = m + (n + p) m + (n + p) = n + (m + p)

(n. 0 + n = n) (m. m + 0 = m) (m n. suc m + n = suc (m + n))
  m n. m + suc n = suc (m + n)

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)

(n. 0 * n = 0) (m. m * 0 = 0) (n. 1 * n = n) (m. m * 1 = m)
  (m n. suc m * n = m * n + n) m n. m * suc n = m + m * n