Package natural-divides-gcd: Natural number greatest common divisor
Information
name | natural-divides-gcd |
version | 1.6 |
description | Natural number greatest common divisor |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
checksum | 264ab2b84664d4f6e7fd53336326cd0727a11db2 |
requires | base natural-divides-def natural-divides-thm |
show | Data.Bool Data.Pair Number.Natural Relation |
Files
- Package tarball natural-divides-gcd-1.6.tgz
- Theory source file natural-divides-gcd.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- chineseRemainder
- egcd
- gcd
- Natural
Theorems
⊦ ∀a. gcd 0 a = a
⊦ ∀a. gcd a 0 = a
⊦ ∀a. gcd a a = a
⊦ ∀b. fst (egcd 0 b) = b
⊦ ∀a b. divides (gcd a b) a
⊦ ∀a b. divides (gcd a b) b
⊦ ∀a. gcd a 1 = 1
⊦ ∀a. gcd 1 a = 1
⊦ ∀a b. divides (fst (egcd a b)) a
⊦ ∀a b. divides (fst (egcd a b)) b
⊦ ∀a b. gcd a b = gcd b a
⊦ ∀a b. fst (egcd a b) = gcd a b
⊦ ∀a. egcd a 0 = (a, 1, 0)
⊦ ∀a b. gcd a b = a ⇔ divides a b
⊦ ∀a b. gcd b a = a ⇔ divides a b
⊦ ∀a b. gcd a (a + b) = gcd a b
⊦ ∀a b. gcd a (b + a) = gcd a b
⊦ ∀a b. gcd (a + b) b = gcd a b
⊦ ∀a b. gcd (b + a) b = gcd a b
⊦ ∀a b c. divides b a ⇒ divides (gcd b c) a
⊦ ∀a b c. divides b a ⇒ divides (gcd c b) a
⊦ ∀b. egcd 1 b = (1, 1, 0)
⊦ ∀a b c. gcd (gcd a b) c = gcd a (gcd b c)
⊦ ∀a b. a ≤ b ⇒ gcd a (b - a) = gcd a b
⊦ ∀a b. b ≤ a ⇒ gcd (a - b) b = gcd a b
⊦ ∀a b. gcd a b = 0 ⇔ a = 0 ∧ b = 0
⊦ ∀a b s t. divides (gcd a b) (distance (s * a) (t * b))
⊦ ∀a b. ∃s t. distance (s * a) (t * b) = gcd a b
⊦ ∀a b. ¬(a = 0) ⇒ gcd a (b mod a) = gcd a b
⊦ ∀a b c. divides c (gcd a b) ⇔ divides c a ∧ divides c b
⊦ ∀a b c. divides (gcd a (b * c)) (gcd a b * gcd a c)
⊦ ∀a b c. gcd (a * b) (a * c) = a * gcd b c
⊦ ∀a b c. gcd (b * a) (c * a) = gcd b c * a
⊦ ∀a b c. divides c a ∧ divides c b ⇒ divides c (gcd a b)
⊦ ∀a b. gcd a b = 1 ⇒ gcd (a * a) b = 1
⊦ ∀a b. gcd b a = 1 ⇒ gcd b (a * a) = 1
⊦ ∀a b. gcd b (a * a) = 1 ⇔ gcd b a = 1
⊦ ∀a b. gcd (a * a) b = 1 ⇔ gcd a b = 1
⊦ ∀a b c. gcd b (a * c) = 1 ⇒ gcd b c = 1
⊦ ∀a b c. gcd b (c * a) = 1 ⇒ gcd b c = 1
⊦ ∀a b c. gcd (a * b) c = 1 ⇒ gcd b c = 1
⊦ ∀a b c. gcd (b * a) c = 1 ⇒ gcd b c = 1
⊦ ∀a b c. gcd a b = 1 ⇒ gcd a (b * c) = gcd a c
⊦ ∀a b c. gcd a b = 1 ⇒ gcd a (c * b) = gcd a c
⊦ ∀a b c. gcd b a = 1 ⇒ gcd (b * c) a = gcd c a
⊦ ∀a b c. gcd b a = 1 ⇒ gcd (c * b) a = gcd c a
⊦ ∀a. ¬(a = 0) ⇒ egcd a 1 = (1, 1, a - 1)
⊦ ∀a b. ¬(a = 0) ⇒ ∃s t. t * b + gcd a b = s * a
⊦ ∀a b. ¬(a = 0) ⇒ ∃s t. t * b + gcd b a = s * a
⊦ ∀a b x y. x < a ∧ y < b ⇒ chineseRemainder a b x y < a * b
⊦ ∀a b s t. distance (s * a) (t * b) = 1 ⇒ gcd a b = 1
⊦ ∀a b. (∀c. divides c a ∧ divides c b ⇒ c = 1) ⇒ gcd a b = 1
⊦ ∀a b.
gcd a b = if a = 0 then b else if a ≤ b then gcd a (b - a) else gcd b a
⊦ ∀a b c. gcd b c = 1 ∧ divides b a ∧ divides c a ⇒ divides (b * c) a
⊦ ∀a b c. gcd a (b * c) = 1 ⇔ gcd a b = 1 ∧ gcd a c = 1
⊦ ∀a b c. gcd (b * c) a = 1 ⇔ gcd b a = 1 ∧ gcd c a = 1
⊦ ∀a b c. gcd a b = 1 ∧ gcd a c = 1 ⇒ gcd a (b * c) = 1
⊦ ∀a b c. gcd b a = 1 ∧ gcd c a = 1 ⇒ gcd (b * c) a = 1
⊦ ∀ap b. let a ← ap + 1 in let (g, s, t) ← egcd a b in t < a
⊦ ∀a b s t g. s * a + g = t * b ∧ divides g a ∧ divides g b ⇒ gcd a b = g
⊦ ∀a b s t g. t * b + g = s * a ∧ divides g a ∧ divides g b ⇒ gcd a b = g
⊦ ∀a b s t g.
distance (s * a) (t * b) = g ∧ divides g a ∧ divides g b ⇒ gcd a b = g
⊦ ∀ap b. let a ← ap + 1 in let (g, s, t) ← egcd a b in s < max b 2
⊦ ∀a b g.
divides g a ∧ divides g b ∧
(∀c. divides c a ∧ divides c b ⇒ divides c g) ⇒ gcd a b = g
⊦ ∀a b g s t. ¬(a = 0) ∧ egcd a b = (g, s, t) ⇒ t * b + g = s * a
⊦ ∀ap b. let a ← ap + 1 in let (g, s, t) ← egcd a b in t * b + g = s * a
⊦ ∀a b g s t. ¬(a = 0) ∧ egcd a b = (g, s, t) ⇒ s < max b 2 ∧ t < a
⊦ ∀a b.
¬(a = 0) ⇒ ∃s t. egcd a b = (gcd a b, s, t) ∧ t * b + gcd a b = s * a
⊦ ∀a b x y n.
gcd a b = 1 ∧ x < a ∧ y < b ∧ chineseRemainder a b x y = n ⇒
n mod a = x ∧ n mod b = y
⊦ ∀ap bp xp yp.
let aq ← ap + 1 in
let bq ← bp + 1 in
let g ← fst (egcd aq bq) in
let a ← aq div g in
let b ← bq div g in
let x ← xp mod a in
let y ← yp mod b in
chineseRemainder a b x y < a * b
⊦ ∀ap bp xp yp.
let aq ← ap + 1 in
let bq ← bp + 1 in
let g ← fst (egcd aq bq) in
let a ← aq div g in
let b ← bq div g in
let x ← xp mod a in
let y ← yp mod b in
chineseRemainder a b x y mod a = x
⊦ ∀ap bp xp yp.
let aq ← ap + 1 in
let bq ← bp + 1 in
let g ← fst (egcd aq bq) in
let a ← aq div g in
let b ← bq div g in
let x ← xp mod a in
let y ← yp mod b in
chineseRemainder a b x y mod b = y
⊦ ∀a b x y.
chineseRemainder a b x y =
let (g, s, t) ← egcd a b in (x * ((a - t) * b) + y * (s * a)) mod a * b
⊦ ∀a b.
chineseRemainder a b =
let (g, s, t) ← egcd a b in
let ab ← a * b in
let sa ← s * a in
let tb ← (a - t) * b in
λx y. (x * tb + y * sa) mod ab
⊦ ∀p.
p 0 0 ∧ (∀a b. gcd a b = 1 ⇒ p a b) ∧
(∀c a b. ¬(c = 0) ∧ p a b ⇒ p (c * a) (c * b)) ⇒ ∀a b. p a b
⊦ ∀p.
(∀a. p a 0) ∧ (∀a b. ¬(b = 0) ∧ divides b a ⇒ p a b) ∧
(∀a b c. ¬(b = 0) ∧ c = a mod b ∧ ¬(c = 0) ∧ p c (b mod c) ⇒ p a b) ⇒
∀a b. p a b
⊦ ∀a b.
egcd a b =
if b = 0 then (a, 1, 0)
else
let c ← a mod b in
if c = 0 then (b, 1, a div b - 1)
else
let (g, s, t) ← egcd c (b mod c) in
let u ← s + (b div c) * t in
(g, u, t + (a div b) * u)
External Type Operators
- →
- bool
- Data
- Pair
- ×
- Pair
- Number
- Natural
- natural
- Natural
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- Pair
- ,
- fst
- snd
- Bool
- Number
- Natural
- *
- +
- -
- <
- ≤
- bit0
- bit1
- distance
- div
- divides
- max
- mod
- suc
- zero
- Natural
- Relation
- measure
- wellFounded
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ bit0 0 = 0
⊦ ∀t. t ⇒ t
⊦ ∀n. n ≤ n
⊦ ∀a. divides a 0
⊦ ∀a. divides a a
⊦ ∀m. wellFounded (measure m)
⊦ ⊥ ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ ∀m. ¬(m < 0)
⊦ ∀n. n < suc n
⊦ ∀a. divides 1 a
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊥ ⇔ ⊥
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. t ∧ t ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀t. t ∨ t ⇔ t
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. 0 * n = 0
⊦ ∀m. m * 0 = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀n. n - n = 0
⊦ ∀n. distance 0 n = n
⊦ ∀n. distance n n = 0
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀m. m * 1 = m
⊦ ∀n. n div 1 = n
⊦ ∀n. n mod 1 = 0
⊦ ∀m. 1 * m = m
⊦ ∀m n. m ≤ m + n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀m. suc m = m + 1
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀a. divides 0 a ⇔ a = 0
⊦ ∀n. suc n - 1 = n
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀a b. fst (a, b) = a
⊦ ∀a b. snd (a, b) = b
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀n. 0 < n ⇔ ¬(n = 0)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀x. ∃a b. x = (a, b)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀a b. (a ⇔ b) ⇒ a ⇒ b
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m + n = n + m
⊦ ∀m n. distance m n = distance n m
⊦ ∀m n. max m n = max n m
⊦ ∀a b. a = b ⇒ divides a b
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀m n. m + n - m = n
⊦ ∀m n. distance (m + n) m = n
⊦ ∀a. divides a 1 ⇔ a = 1
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ ∀m n. m < suc n ⇔ m ≤ n
⊦ ∀m n. suc m ≤ n ⇔ m < n
⊦ ∀m. m = 0 ∨ ∃n. m = suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀n. ¬(n = 0) ⇒ 0 mod n = 0
⊦ ∀p. ¬(∃x. p x) ⇔ ∀x. ¬p x
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀t1 t2. ¬t1 ⇒ ¬t2 ⇔ t2 ⇒ t1
⊦ ∀m n. m < n ⇒ m div n = 0
⊦ ∀m n. m < n ⇒ m mod n = m
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m < suc n ⇔ m < n
⊦ ∀t1 t2. ¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2
⊦ ∀m n. max m n = if m ≤ n then n else m
⊦ ∀m n. suc m * n = m * n + n
⊦ ∀m n. ¬(n = 0) ⇒ m mod n < n
⊦ ∀m n. ¬(n = 0) ⇒ m div n ≤ m
⊦ ∀p. (∀x. p x) ⇔ ∀a b. p (a, b)
⊦ ∀p. (∃x. p x) ⇔ ∃a b. p (a, b)
⊦ ∀a b c. divides a c ⇒ divides a (b * c)
⊦ ∀m n. m ≤ n ⇔ ∃d. n = m + d
⊦ ∀a b. divides a b ⇔ ∃c. c * a = b
⊦ ∀f g. (∀x. f x = g x) ⇔ f = g
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. n ≤ m ⇒ m - n + n = m
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀a b. divides a b ∧ divides b a ⇒ a = b
⊦ ∀f. ∃fn. ∀a b. fn (a, b) = f a b
⊦ ∀m n. m < n ⇔ ∃d. n = m + suc d
⊦ ∀m x y. measure m x y ⇔ m x < m y
⊦ ∀p. (∀x y. p x y) ⇔ ∀y x. p x y
⊦ ∀m n. ¬(m = 0) ⇒ m * n mod m = 0
⊦ ∀a b. ¬(b = 0) ∧ divides a b ⇒ a ≤ b
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀p q r. p ⇒ q ⇒ r ⇔ p ∧ q ⇒ r
⊦ ∀t1 t2 t3. (t1 ∨ t2) ∨ t3 ⇔ t1 ∨ t2 ∨ t3
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + (n + p) = m + n + p
⊦ ∀m n p. m + n = m + p ⇔ n = p
⊦ ∀p m n. m + p = n + p ⇔ m = n
⊦ ∀m n p. m + n < m + p ⇔ n < p
⊦ ∀m n p. n + m < p + m ⇔ n < p
⊦ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
⊦ ∀p m n. distance (m + p) (n + p) = distance m n
⊦ ∀m n p. m < n ∧ n < p ⇒ m < p
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n < p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀a b c. divides a b ∧ divides b c ⇒ divides a c
⊦ ∀r. (∀x. ∃y. r x y) ⇔ ∃f. ∀x. r x (f x)
⊦ ∀m n. m ≤ suc n ⇔ m = suc n ∨ m ≤ n
⊦ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀m n. distance (distance m n) (distance m (n + 1)) = 1
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀a b. ¬(a = 0) ⇒ (divides a b ⇔ b mod a = 0)
⊦ ∀n m. ¬(n = 0) ⇒ m mod n mod n = m mod n
⊦ ∀m n. ¬(n = 0) ⇒ (m div n = 0 ⇔ m < n)
⊦ ∀m n p. m < max n p ⇔ m < n ∨ m < p
⊦ ∀m n p. m * (n + p) = m * n + m * p
⊦ ∀m n p. m * distance n p = distance (m * n) (m * p)
⊦ ∀m n p. (m + n) * p = m * p + n * p
⊦ ∀p m n. distance m n * p = distance (m * p) (n * p)
⊦ ∀a b c. divides a b ∧ divides a c ⇒ divides a (b + c)
⊦ ∀p q. (∀x. p x ∧ q x) ⇔ (∀x. p x) ∧ ∀x. q x
⊦ ∀a b. divides a b ⇔ if a = 0 then b = 0 else b mod a = 0
⊦ ∀a b. ¬(a = 0) ⇒ (divides a b ⇔ (b div a) * a = b)
⊦ ∀m n. ¬(n = 0) ⇒ (m div n) * n + m mod n = m
⊦ ∀m n p. n ≤ m ⇒ m + p - (n + p) = m - n
⊦ ∀m n p. m * p = n * p ⇔ m = n ∨ p = 0
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * p ≤ n * p ⇔ m ≤ n ∨ p = 0
⊦ ∀a b c. divides (a * b) (a * c) ⇔ a = 0 ∨ divides b c
⊦ ∀a b c. divides (b * a) (c * a) ⇔ a = 0 ∨ divides b c
⊦ ∀m n p. m * n < m * p ⇔ ¬(m = 0) ∧ n < p
⊦ ∀m n p. m * p < n * p ⇔ m < n ∧ ¬(p = 0)
⊦ ∀a b a' b'. (a, b) = (a', b') ⇔ a = a' ∧ b = b'
⊦ ∀m n p. n ≤ m ⇒ (m - n) * p = m * p - n * p
⊦ ∀m n p. distance m n = p ⇔ m + p = n ∨ n + p = m
⊦ ∀a b c. c ≤ b ∧ divides a b ∧ divides a c ⇒ divides a (b - c)
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀m n p. ¬(n * p = 0) ⇒ m mod n * p mod n = m mod n
⊦ ∀r. wellFounded r ⇔ ∀p. (∀x. (∀y. r y x ⇒ p y) ⇒ p x) ⇒ ∀x. p x
⊦ ∀n a b. ¬(n = 0) ⇒ (a mod n + b mod n) mod n = (a + b) mod n
⊦ ∀a b.
∃g.
divides g a ∧ divides g b ∧
∀c. divides c a ∧ divides c b ⇒ divides c g
⊦ ∀r.
wellFounded r ⇒
∀h.
(∀f g x. (∀z. r z x ⇒ f z = g z) ⇒ h f x = h g x) ⇒
∃f. ∀x. f x = h f x
⊦ ∀p.
(∀n. p 0 n) ∧ (∀m n. n < m ∧ p n m ⇒ p m n) ∧
(∀m n. p m n ⇒ p m (n + m)) ⇒ ∀m n. p m n