Package natural-divides-gcd-def: Definition of natural number greatest common divisor
Information
name | natural-divides-gcd-def |
version | 1.3 |
description | Definition of natural number greatest common divisor |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2015-05-25 |
checksum | 533aef22d91ee7b4a1247e6e804f31e7bcf622f6 |
requires | base natural-divides-def natural-divides-thm |
show | Data.Bool Data.Pair Number.Natural Relation |
Files
- Package tarball natural-divides-gcd-def-1.3.tgz
- Theory source file natural-divides-gcd-def.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- chineseRemainder
- egcd
- gcd
- Natural
Theorems
⊦ ∀a b. divides (gcd a b) a
⊦ ∀a b. divides (gcd a b) b
⊦ ∀a b c. divides c a ∧ divides c b ⇒ divides c (gcd a b)
⊦ ∀a b x y.
chineseRemainder a b x y =
let (g, s, t) ← egcd a b in (x * ((a - t) * b) + y * (s * a)) mod a * b
⊦ ∀a b.
egcd a b =
if b = 0 then (a, 1, 0)
else
let c ← a mod b in
if c = 0 then (b, 1, a div b - 1)
else
let (g, s, t) ← egcd c (b mod c) in
let u ← s + (b div c) * t in
(g, u, t + (a div b) * u)
External Type Operators
- →
- bool
- Data
- Pair
- ×
- Pair
- Number
- Natural
- natural
- Natural
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- cond
- ⊥
- ⊤
- Pair
- ,
- snd
- Bool
- Number
- Natural
- *
- +
- -
- <
- bit1
- div
- divides
- mod
- zero
- Natural
- Relation
- measure
- wellFounded
Assumptions
⊦ ⊤
⊦ ∀m. wellFounded (measure m)
⊦ ⊥ ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀a b. snd (a, b) = b
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. ¬(n = 0) ⇒ m mod n < n
⊦ ∀p. (∀x. p x) ⇔ ∀a b. p (a, b)
⊦ ∀f. ∃fn. ∀a b. fn (a, b) = f a b
⊦ ∀m x y. measure m x y ⇔ m x < m y
⊦ ∀m n p. m < n ∧ n < p ⇒ m < p
⊦ ∀r. (∀x. ∃y. r x y) ⇔ ∃f. ∀x. r x (f x)
⊦ ∀p q. (∀x. p x ∧ q x) ⇔ (∀x. p x) ∧ ∀x. q x
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀a b.
∃g.
divides g a ∧ divides g b ∧
∀c. divides c a ∧ divides c b ⇒ divides c g
⊦ ∀r.
wellFounded r ⇒
∀h.
(∀f g x. (∀z. r z x ⇒ f z = g z) ⇒ h f x = h g x) ⇒
∃f. ∀x. f x = h f x