Package natural-divides-lcm-def: Definition of natural number least common multiple

Information

namenatural-divides-lcm-def
version1.0
descriptionDefinition of natural number least common multiple
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2014-11-01
checksum5286f18fcc7de1e800747c9bcae0713dd188971b
requiresbase
natural-divides-def
natural-divides-gcd
natural-divides-thm
showData.Bool
Number.Natural

Files

Defined Constant

Theorems

a. lcm 0 a = 0

a b. lcm a b * gcd a b = a * b

External Type Operators

External Constants

Assumptions

¬

p. p

t. t ¬t

(¬) = λp. p

t. (x. t) t

() = λp. p = λx.

t. t

n. 0 * n = 0

a b. divides (gcd a b) a

() = λp q. p q p

t1 t2. (if then t1 else t2) = t2

t1 t2. (if then t1 else t2) = t1

() = λp q. (λf. f p q) = λf. f

a b c. divides a b divides a (b * c)

() = λp q. r. (p r) (q r) r

a b. gcd a b = 0 a = 0 b = 0

a b. ¬(a = 0) (divides a b (b div a) * a = b)