Package natural-exp: Natural number exponentiation
Information
name | natural-exp |
version | 1.24 |
description | Natural number exponentiation |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
requires | bool natural-def natural-thm natural-numeral natural-order natural-add natural-mult |
show | Data.Bool Number.Natural |
Files
- Package tarball natural-exp-1.24.tgz
- Theory file natural-exp.thy (included in the package tarball)
Defined Constant
- Number
- Natural
- ^
- Natural
Theorems
⊦ ∀m. m ^ 0 = 1
⊦ ∀n. n ^ 1 = n
⊦ ∀n. 1 ^ n = 1
⊦ ∀n. n ^ 2 = n * n
⊦ ∀n. 0 ^ n = if n = 0 then 1 else 0
⊦ ∀m n. m ^ suc n = m * m ^ n
⊦ ∀x y n. x ≤ y ⇒ x ^ n ≤ y ^ n
⊦ ∀m n p. m ^ (n * p) = (m ^ n) ^ p
⊦ ∀n x. 0 < x ^ n ⇔ ¬(x = 0) ∨ n = 0
⊦ ∀m n. m ^ n = 0 ⇔ m = 0 ∧ ¬(n = 0)
⊦ ∀m n p. m ^ (n + p) = m ^ n * m ^ p
⊦ ∀p m n. (m * n) ^ p = m ^ p * n ^ p
⊦ ∀x n. x ^ n = 1 ⇔ x = 1 ∨ n = 0
⊦ ∀x y n. x ^ n = y ^ n ⇔ x = y ∨ n = 0
⊦ ∀x y n. x ^ n ≤ y ^ n ⇔ x ≤ y ∨ n = 0
⊦ ∀x y n. x ^ n < y ^ n ⇔ x < y ∧ ¬(n = 0)
⊦ ∀x y n. x < y ∧ ¬(n = 0) ⇒ x ^ n < y ^ n
⊦ ∀x m n. x ^ m = x ^ n ⇔ if x = 0 then m = 0 ⇔ n = 0 else x = 1 ∨ m = n
⊦ ∀x m n. x ^ m ≤ x ^ n ⇔ if x = 0 then m = 0 ⇒ n = 0 else x = 1 ∨ m ≤ n
⊦ ∀x m n. x ^ m < x ^ n ⇔ 2 ≤ x ∧ m < n ∨ x = 0 ∧ ¬(m = 0) ∧ n = 0
Input Type Operators
- →
- bool
- Number
- Natural
- natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- cond
- ⊥
- ⊤
- Bool
- Number
- Natural
- *
- +
- <
- ≤
- bit0
- bit1
- suc
- zero
- Natural
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ bit0 0 = 0
⊦ ∀t. t ⇒ t
⊦ ∀n. n ≤ n
⊦ ⊥ ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ ∀n. ¬(n < n)
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊥ ⇔ ⊥
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀n. ¬(suc n = 0)
⊦ ∀m. m < 0 ⇔ ⊥
⊦ ∀n. 0 * n = 0
⊦ ∀m. m * 0 = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀m. m * 1 = m
⊦ ∀m. 1 * m = m
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀n. 2 * n = n + n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. m < m + n ⇔ 0 < n
⊦ ∀t1 t2. ¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2
⊦ ∀t1 t2. ¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2
⊦ ∀m n. m * suc n = m + m * n
⊦ ∀m n. suc m * n = m * n + n
⊦ ∀m n. m ≤ n ⇔ ∃d. n = m + d
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀m n. m < n ⇔ ∃d. n = m + suc d
⊦ ∀p q. (∀x. p ⇒ q x) ⇔ p ⇒ ∀x. q x
⊦ ∀m n. m < suc n ⇔ m = n ∨ m < n
⊦ ∀t1 t2 t3. (t1 ∨ t2) ∨ t3 ⇔ t1 ∨ t2 ∨ t3
⊦ ∀m n p. m * (n * p) = n * (m * p)
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n < p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (suc n)) ⇒ ∀n. P n
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀p q. (∀x. p x ∧ q x) ⇔ (∀x. p x) ∧ ∀x. q x
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n
⊦ ∀m n. m * n = 1 ⇔ m = 1 ∧ n = 1
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * p ≤ n * p ⇔ m ≤ n ∨ p = 0
⊦ ∀m n p. m * p < n * p ⇔ m < n ∧ ¬(p = 0)
⊦ ∀m n p q. m ≤ n ∧ p ≤ q ⇒ m * p ≤ n * q
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)