name | natural-exp |
version | 1.5 |
description | Definitions and theorems about natural number exponentiation |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
show | Data.Bool Number.Natural |
⊦ ∀n. exp n 1 = n
⊦ ∀n. exp 1 n = 1
⊦ ∀n. exp n 2 = n * n
⊦ ∀n. exp 0 n = if n = 0 then 1 else 0
⊦ ∀x y n. x ≤ y ⇒ exp x n ≤ exp y n
⊦ ∀m n p. exp m (n * p) = exp (exp m n) p
⊦ ∀n x. 0 < exp x n ⇔ ¬(x = 0) ∨ n = 0
⊦ ∀m n. exp m n = 0 ⇔ m = 0 ∧ ¬(n = 0)
⊦ ∀m n p. exp m (n + p) = exp m n * exp m p
⊦ ∀p m n. exp (m * n) p = exp m p * exp n p
⊦ ∀x n. exp x n = 1 ⇔ x = 1 ∨ n = 0
⊦ ∀x y n. exp x n = exp y n ⇔ x = y ∨ n = 0
⊦ ∀x y n. exp x n ≤ exp y n ⇔ x ≤ y ∨ n = 0
⊦ ∀x y n. exp x n < exp y n ⇔ x < y ∧ ¬(n = 0)
⊦ ∀x y n. x < y ∧ ¬(n = 0) ⇒ exp x n < exp y n
⊦ (∀m. exp m 0 = 1) ∧ ∀m n. exp m (suc n) = m * exp m n
⊦ ∀x m n.
exp x m = exp x n ⇔ if x = 0 then m = 0 ⇔ n = 0 else x = 1 ∨ m = n
⊦ ∀x m n.
exp x m ≤ exp x n ⇔ if x = 0 then m = 0 ⇒ n = 0 else x = 1 ∨ m ≤ n
⊦ ∀x m n. exp x m < exp x n ⇔ 2 ≤ x ∧ m < n ∨ x = 0 ∧ ¬(m = 0) ∧ n = 0
⊦ T
⊦ ∀n. n ≤ n
⊦ F ⇔ ∀p. p
⊦ 1 = suc 0
⊦ ∀t. t ∨ ¬t
⊦ ∀n. ¬(n < n)
⊦ (~) = λp. p ⇒ F
⊦ (∃) = λP. P ((select) P)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. ¬(suc n = 0)
⊦ 2 = suc 1
⊦ ∀n. bit0 n = n + n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀n. bit1 n = suc (n + n)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀n. 2 * n = n + n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀m n. m < m + n ⇔ 0 < n
⊦ ∀m n. m ≤ n ⇔ ∃d. n = m + d
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀m n. m < n ⇔ ∃d. n = m + suc d
⊦ ∀P Q. (∀x. P ⇒ Q x) ⇔ P ⇒ ∀x. Q x
⊦ ∀t1 t2 t3. t1 ∨ t2 ∨ t3 ⇔ (t1 ∨ t2) ∨ t3
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n < p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀t1 t2. (if T then t1 else t2) = t1 ∧ (if F then t1 else t2) = t2
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (suc n)) ⇒ ∀n. P n
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀P Q. (∀x. P x ∧ Q x) ⇔ (∀x. P x) ∧ ∀x. Q x
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n
⊦ ∀m n. m * n = 1 ⇔ m = 1 ∧ n = 1
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * p ≤ n * p ⇔ m ≤ n ∨ p = 0
⊦ ∀m n p. m * p < n * p ⇔ m < n ∧ ¬(p = 0)
⊦ ∀m n p q. m ≤ n ∧ p ≤ q ⇒ m * p ≤ n * q
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ (∀m. m < 0 ⇔ F) ∧ ∀m n. m < suc n ⇔ m = n ∨ m < n
⊦ ∀t1 t2. (¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2) ∧ (¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2)
⊦ (∀m. m ≤ 0 ⇔ m = 0) ∧ ∀m n. m ≤ suc n ⇔ m = suc n ∨ m ≤ n
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ ∀m n p.
m * n = n * m ∧ m * n * p = m * (n * p) ∧ m * (n * p) = n * (m * p)
⊦ (∀n. 0 + n = n) ∧ (∀m. m + 0 = m) ∧ (∀m n. suc m + n = suc (m + n)) ∧
∀m n. m + suc n = suc (m + n)
⊦ ∀p q r.
(p ∨ q ⇔ q ∨ p) ∧ ((p ∨ q) ∨ r ⇔ p ∨ q ∨ r) ∧ (p ∨ q ∨ r ⇔ q ∨ p ∨ r) ∧
(p ∨ p ⇔ p) ∧ (p ∨ p ∨ q ⇔ p ∨ q)
⊦ (∀n. 0 * n = 0) ∧ (∀m. m * 0 = 0) ∧ (∀n. 1 * n = n) ∧ (∀m. m * 1 = m) ∧
(∀m n. suc m * n = m * n + n) ∧ ∀m n. m * suc n = m + m * n