Package natural-exp-def: natural-exp-def

Information

namenatural-exp-def
version1.4
descriptionnatural-exp-def
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-07-25
showData.Bool

Files

Defined Constant

Theorem

(m. Number.Natural.exp m 0 = 1)
  m n.
    Number.Natural.exp m (Number.Natural.suc n) =
    Number.Natural.* m (Number.Natural.exp m n)

Input Type Operators

Input Constants

Assumptions

T

() = λP. P ((select) P)

() = λp. p = λx. T

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

e f. fn. fn 0 = e n. fn (Number.Natural.suc n) = f (fn n) n