name | natural-exp-thm |
version | 1.0 |
description | natural-exp-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀n. Number.Natural.exp n (Number.Numeral.bit1 Number.Numeral.zero) = n
⊦ ∀n.
Number.Natural.exp (Number.Numeral.bit1 Number.Numeral.zero) n =
Number.Numeral.bit1 Number.Numeral.zero
⊦ ∀n.
Number.Natural.exp n
(Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) =
Number.Natural.* n n
⊦ ∀n.
Number.Natural.exp Number.Numeral.zero n =
(if n = Number.Numeral.zero
then Number.Numeral.bit1 Number.Numeral.zero else Number.Numeral.zero)
⊦ ∀m n p.
Number.Natural.exp m (Number.Natural.* n p) =
Number.Natural.exp (Number.Natural.exp m n) p
⊦ ∀m n.
Number.Natural.exp m n = Number.Numeral.zero ⇔
m = Number.Numeral.zero ∧ ¬(n = Number.Numeral.zero)
⊦ ∀m n p.
Number.Natural.exp m (Number.Natural.+ n p) =
Number.Natural.* (Number.Natural.exp m n) (Number.Natural.exp m p)
⊦ ∀p m n.
Number.Natural.exp (Number.Natural.* m n) p =
Number.Natural.* (Number.Natural.exp m p) (Number.Natural.exp n p)
⊦ ∀x n.
Number.Natural.exp x n = Number.Numeral.bit1 Number.Numeral.zero ⇔
x = Number.Numeral.bit1 Number.Numeral.zero ∨ n = Number.Numeral.zero
⊦ T
⊦ F ⇔ ∀p. p
⊦ Number.Numeral.bit1 Number.Numeral.zero =
Number.Natural.suc Number.Numeral.zero
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. ¬(Number.Natural.suc n = Number.Numeral.zero)
⊦ ∀n. Number.Numeral.bit0 n = Number.Natural.+ n n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀n. Number.Numeral.bit1 n = Number.Natural.suc (Number.Natural.+ n n)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀m n. Number.Natural.* m n = Number.Natural.* n m
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n.
Number.Natural.+ m n = Number.Numeral.zero ⇔
m = Number.Numeral.zero ∧ n = Number.Numeral.zero
⊦ ∀P.
P Number.Numeral.zero ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ ∀m n.
Number.Natural.* m n = Number.Numeral.bit1 Number.Numeral.zero ⇔
m = Number.Numeral.bit1 Number.Numeral.zero ∧
n = Number.Numeral.bit1 Number.Numeral.zero
⊦ (∀m.
Number.Natural.exp m Number.Numeral.zero =
Number.Numeral.bit1 Number.Numeral.zero) ∧
∀m n.
Number.Natural.exp m (Number.Natural.suc n) =
Number.Natural.* m (Number.Natural.exp m n)
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀m n p.
Number.Natural.* m n = Number.Natural.* n m ∧
Number.Natural.* (Number.Natural.* m n) p =
Number.Natural.* m (Number.Natural.* n p) ∧
Number.Natural.* m (Number.Natural.* n p) =
Number.Natural.* n (Number.Natural.* m p)
⊦ (∀n. Number.Natural.+ Number.Numeral.zero n = n) ∧
(∀m. Number.Natural.+ m Number.Numeral.zero = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)
⊦ (∀n. Number.Natural.* Number.Numeral.zero n = Number.Numeral.zero) ∧
(∀m. Number.Natural.* m Number.Numeral.zero = Number.Numeral.zero) ∧
(∀n. Number.Natural.* (Number.Numeral.bit1 Number.Numeral.zero) n = n) ∧
(∀m. Number.Natural.* m (Number.Numeral.bit1 Number.Numeral.zero) = m) ∧
(∀m n.
Number.Natural.* (Number.Natural.suc m) n =
Number.Natural.+ (Number.Natural.* m n) n) ∧
∀m n.
Number.Natural.* m (Number.Natural.suc n) =
Number.Natural.+ m (Number.Natural.* m n)