Package natural-exp-thm: natural-exp-thm
Information
name | natural-exp-thm |
version | 1.4 |
description | natural-exp-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball natural-exp-thm-1.4.tgz
- Theory file natural-exp-thm.thy (included in the package tarball)
Theorems
⊦ ∀n. Number.Natural.exp n 1 = n
⊦ ∀n. Number.Natural.exp 1 n = 1
⊦ ∀n. Number.Natural.exp n 2 = Number.Natural.* n n
⊦ ∀n. Number.Natural.exp 0 n = if n = 0 then 1 else 0
⊦ ∀m n p.
Number.Natural.exp m (Number.Natural.* n p) =
Number.Natural.exp (Number.Natural.exp m n) p
⊦ ∀m n. Number.Natural.exp m n = 0 ⇔ m = 0 ∧ ¬(n = 0)
⊦ ∀m n p.
Number.Natural.exp m (Number.Natural.+ n p) =
Number.Natural.* (Number.Natural.exp m n) (Number.Natural.exp m p)
⊦ ∀p m n.
Number.Natural.exp (Number.Natural.* m n) p =
Number.Natural.* (Number.Natural.exp m p) (Number.Natural.exp n p)
⊦ ∀x n. Number.Natural.exp x n = 1 ⇔ x = 1 ∨ n = 0
Input Type Operators
- →
- bool
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∨
- ¬
- cond
- F
- T
- Bool
- Number
- Natural
- Number.Natural.*
- Number.Natural.+
- Number.Natural.bit0
- Number.Natural.bit1
- Number.Natural.exp
- Number.Natural.suc
- Number.Natural.zero
- Natural
Assumptions
⊦ T
⊦ F ⇔ ∀p. p
⊦ 1 = Number.Natural.suc 0
⊦ (¬) = λp. p ⇒ F
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. ¬(Number.Natural.suc n = 0)
⊦ ∀n. Number.Natural.bit0 n = Number.Natural.+ n n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ ∀n. Number.Natural.bit1 n = Number.Natural.suc (Number.Natural.+ n n)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀m n. Number.Natural.* m n = Number.Natural.* n m
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. Number.Natural.+ m n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ ∀m n. Number.Natural.* m n = 1 ⇔ m = 1 ∧ n = 1
⊦ (∀m. Number.Natural.exp m 0 = 1) ∧
∀m n.
Number.Natural.exp m (Number.Natural.suc n) =
Number.Natural.* m (Number.Natural.exp m n)
⊦ ∀P c x y. P (if c then x else y) ⇔ (c ⇒ P x) ∧ (¬c ⇒ P y)
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀m n p.
Number.Natural.* m n = Number.Natural.* n m ∧
Number.Natural.* (Number.Natural.* m n) p =
Number.Natural.* m (Number.Natural.* n p) ∧
Number.Natural.* m (Number.Natural.* n p) =
Number.Natural.* n (Number.Natural.* m p)
⊦ (∀n. Number.Natural.+ 0 n = n) ∧ (∀m. Number.Natural.+ m 0 = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)
⊦ (∀n. Number.Natural.* 0 n = 0) ∧ (∀m. Number.Natural.* m 0 = 0) ∧
(∀n. Number.Natural.* 1 n = n) ∧ (∀m. Number.Natural.* m 1 = m) ∧
(∀m n.
Number.Natural.* (Number.Natural.suc m) n =
Number.Natural.+ (Number.Natural.* m n) n) ∧
∀m n.
Number.Natural.* m (Number.Natural.suc n) =
Number.Natural.+ m (Number.Natural.* m n)