Package natural-factorial-def: natural-factorial-def

Information

namenatural-factorial-def
version1.5
descriptionnatural-factorial-def
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-07-25
showData.Bool

Files

Defined Constant

Theorem

Number.Natural.factorial 0 = 1
  n.
    Number.Natural.factorial (Number.Natural.suc n) =
    Number.Natural.* (Number.Natural.suc n) (Number.Natural.factorial n)

Input Type Operators

Input Constants

Assumptions

T

() = λP. P ((select) P)

() = λp. p = λx. T

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

e f. fn. fn 0 = e n. fn (Number.Natural.suc n) = f (fn n) n