name | natural-factorial-def |
version | 1.5 |
description | natural-factorial-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-25 |
show | Data.Bool |
⊦ Number.Natural.factorial 0 = 1 ∧
∀n.
Number.Natural.factorial (Number.Natural.suc n) =
Number.Natural.* (Number.Natural.suc n) (Number.Natural.factorial n)
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (Number.Natural.suc n) = f (fn n) n