name | natural-factorial-thm |
version | 1.4 |
description | natural-factorial-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-25 |
show | Data.Bool |
⊦ ∀n. Number.Natural.< 0 (Number.Natural.factorial n)
⊦ ∀n. ¬(Number.Natural.factorial n = 0)
⊦ ∀n. Number.Natural.≤ 1 (Number.Natural.factorial n)
⊦ ∀m n.
Number.Natural.≤ m n ⇒
Number.Natural.≤ (Number.Natural.factorial m)
(Number.Natural.factorial n)
⊦ T
⊦ ∀n. Number.Natural.≤ 0 n
⊦ ∀n. Number.Natural.≤ n n
⊦ 1 = Number.Natural.suc 0
⊦ ∀n. Number.Natural.< 0 (Number.Natural.suc n)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀n. Number.Natural.< 0 n ⇔ ¬(n = 0)
⊦ ∀m n. Number.Natural.≤ (Number.Natural.suc m) n ⇔ Number.Natural.< m n
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀m n.
Number.Natural.≤ (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.≤ m n
⊦ ∀m n. Number.Natural.≤ m n ⇔ ∃d. n = Number.Natural.+ m d
⊦ ∀m n p.
Number.Natural.≤ m n ∧ Number.Natural.≤ n p ⇒ Number.Natural.≤ m p
⊦ ∀m n.
Number.Natural.< 0 (Number.Natural.* m n) ⇔
Number.Natural.< 0 m ∧ Number.Natural.< 0 n
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ Number.Natural.factorial 0 = 1 ∧
∀n.
Number.Natural.factorial (Number.Natural.suc n) =
Number.Natural.* (Number.Natural.suc n) (Number.Natural.factorial n)
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.* m p) (Number.Natural.* n p) ⇔
Number.Natural.≤ m n ∨ p = 0
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ (∀n. Number.Natural.+ 0 n = n) ∧ (∀m. Number.Natural.+ m 0 = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)
⊦ (∀n. Number.Natural.* 0 n = 0) ∧ (∀m. Number.Natural.* m 0 = 0) ∧
(∀n. Number.Natural.* 1 n = n) ∧ (∀m. Number.Natural.* m 1 = m) ∧
(∀m n.
Number.Natural.* (Number.Natural.suc m) n =
Number.Natural.+ (Number.Natural.* m n) n) ∧
∀m n.
Number.Natural.* m (Number.Natural.suc n) =
Number.Natural.+ m (Number.Natural.* m n)