Package natural-fibonacci-def: Definition of Fibonacci numbers
Information
name | natural-fibonacci-def |
version | 1.17 |
description | Definition of Fibonacci numbers |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2012-06-10 |
requires | base natural-fibonacci-exists |
show | Data.Bool Data.List Data.Pair Number.Natural Number.Natural.Fibonacci Probability.Random |
Files
- Package tarball natural-fibonacci-def-1.17.tgz
- Theory file natural-fibonacci-def.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- fibonacci
- Fibonacci
- decode
- decode.dest
- encode
- encode.find
- encode.mk
- fromRandom
- fromRandom.dest
- zeckendorf
- decode
- Natural
Theorems
⊦ zeckendorf []
⊦ fibonacci 0 = 0
⊦ fibonacci 1 = 1
⊦ ∀f p. decode.dest f p [] = 0
⊦ ∀n. encode n = encode.find n 1 0
⊦ ∀l. decode l = decode.dest 1 0 l
⊦ ∀n. fibonacci (n + 2) = fibonacci (n + 1) + fibonacci n
⊦ ∀h t.
zeckendorf (h :: t) ⇔
if null t then h else ¬(h ∧ head t) ∧ zeckendorf t
⊦ ∀n f p.
encode.find n f p =
let s ← f + p in
if n < s then encode.mk [] n f p else encode.find n s f
⊦ ∀f p h t.
decode.dest f p (h :: t) =
let s ← f + p in let n ← decode.dest s f t in if h then s + n else n
⊦ ∀r.
fromRandom r =
let (r1, r2) ← split r in fromRandom.dest ⊥ 0 1 0 r1 - 1, r2
⊦ ∀l n f p.
encode.mk l n f p =
if p = 0 then l
else if f ≤ n then encode.mk (⊤ :: l) (n - f) p (f - p)
else encode.mk (⊥ :: l) n p (f - p)
⊦ ∀b n f p r.
fromRandom.dest b n f p r =
let (b', r') ← bit r in
if b' ∧ b then n
else
let s ← f + p in fromRandom.dest b' (if b' then s + n else n) s f r'
Input Type Operators
- →
- bool
- Data
- List
- list
- Pair
- ×
- List
- Number
- Natural
- natural
- Natural
- Probability
- Random
- random
- Random
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- List
- ::
- []
- head
- null
- Pair
- ,
- Bool
- Number
- Natural
- +
- -
- <
- ≤
- bit0
- bit1
- zero
- Natural
- Probability
- Random
- bit
- split
- Random
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀xy. ∃x y. xy = (x, y)
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀f. ∃fn. ∀x y. fn (x, y) = f x y
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀b f x y. f (if b then x else y) = if b then f x else f y
⊦ ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)
⊦ ∃f. f 0 = 0 ∧ f 1 = 1 ∧ ∀n. f (n + 2) = f (n + 1) + f n