Package natural-funpow-def: Definition of function power

Information

namenatural-funpow-def
version1.10
descriptionDefinition of function power
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2012-11-10
requiresbool
function
natural-thm
showData.Bool
Function
Number.Natural

Files

Defined Constant

Theorems

f. f 0 = id

f n. f suc n = f f n

Input Type Operators

Input Constants

Assumptions

() = λp. p ((select) p)

() = λp. p = λx.

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f

() = λp. q. (x. p x q) q

p. (x. y. p x y) y. x. p x (y x)

(∃!) = λp. () p x y. p x p y x = y

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n