Package natural-funpow-def: Definition of function power
Information
name | natural-funpow-def |
version | 1.12 |
description | Definition of function power |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2014-01-13 |
requires | bool function natural-thm |
show | Data.Bool Function Number.Natural |
Files
- Package tarball natural-funpow-def-1.12.tgz
- Theory source file natural-funpow-def.thy (included in the package tarball)
Defined Constant
- Function
- ↑
Theorems
⊦ ∀f. f ↑ 0 = id
⊦ ∀f n. f ↑ suc n = f ∘ f ↑ n
External Type Operators
- →
- bool
- Number
- Natural
- natural
- Natural
External Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ⊤
- Bool
- Function
- id
- ∘
- Number
- Natural
- suc
- zero
- Natural
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀r. (∀x. ∃y. r x y) ⇔ ∃f. ∀x. r x (f x)
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n