name | natural-mult-order |
version | 1.0 |
description | natural-mult-order |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀n. Number.Natural.≤ n (Number.Natural.* n n)
⊦ ∀m n.
Number.Natural.< Number.Numeral.zero (Number.Natural.* m n) ⇔
Number.Natural.< Number.Numeral.zero m ∧
Number.Natural.< Number.Numeral.zero n
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.* m n) (Number.Natural.* m p) ⇔
m = Number.Numeral.zero ∨ Number.Natural.≤ n p
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.* m p) (Number.Natural.* n p) ⇔
Number.Natural.≤ m n ∨ p = Number.Numeral.zero
⊦ ∀m n p.
Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p) ⇔
¬(m = Number.Numeral.zero) ∧ Number.Natural.< n p
⊦ ∀m n p.
Number.Natural.< (Number.Natural.* m p) (Number.Natural.* n p) ⇔
Number.Natural.< m n ∧ ¬(p = Number.Numeral.zero)
⊦ ∀m n p.
¬(m = Number.Numeral.zero) ∧ Number.Natural.< n p ⇒
Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p)
⊦ ∀m n p q.
Number.Natural.< m n ∧ Number.Natural.< p q ⇒
Number.Natural.< (Number.Natural.* m p) (Number.Natural.* n q)
⊦ ∀m n p q.
Number.Natural.≤ m n ∧ Number.Natural.≤ p q ⇒
Number.Natural.≤ (Number.Natural.* m p) (Number.Natural.* n q)
⊦ T
⊦ ∀n. Number.Natural.≤ Number.Numeral.zero n
⊦ ∀n. Number.Natural.≤ n n
⊦ F ⇔ ∀p. p
⊦ ∀n. ¬Number.Natural.< n n
⊦ ∀n. Number.Natural.< Number.Numeral.zero (Number.Natural.suc n)
⊦ (¬) = λp. p ⇒ F
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. ¬(Number.Natural.suc n = Number.Numeral.zero)
⊦ ∀m n. Number.Natural.≤ n (Number.Natural.+ m n)
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ T) ∨ (t ⇔ F)
⊦ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. Number.Natural.* m n = Number.Natural.* n m
⊦ ∀m n. Number.Natural.< m n ⇒ Number.Natural.≤ m n
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀m n.
Number.Natural.< (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.< m n
⊦ ∀m n.
Number.Natural.≤ (Number.Natural.suc m) (Number.Natural.suc n) ⇔
Number.Natural.≤ m n
⊦ ∀m n. Number.Natural.≤ m n ⇔ ∃d. n = Number.Natural.+ m d
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. Number.Natural.< m n ⇔ Number.Natural.≤ m n ∧ ¬(m = n)
⊦ ∀m n p.
Number.Natural.+ m (Number.Natural.+ n p) =
Number.Natural.+ (Number.Natural.+ m n) p
⊦ ∀m n p.
Number.Natural.< (Number.Natural.+ m n) (Number.Natural.+ m p) ⇔
Number.Natural.< n p
⊦ ∀m n p.
Number.Natural.≤ (Number.Natural.+ m n) (Number.Natural.+ m p) ⇔
Number.Natural.≤ n p
⊦ ∀m n p.
Number.Natural.≤ m n ∧ Number.Natural.< n p ⇒ Number.Natural.< m p
⊦ ∀P.
P Number.Numeral.zero ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ (∀t. ¬¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
⊦ ∀m n p.
Number.Natural.* m (Number.Natural.+ n p) =
Number.Natural.+ (Number.Natural.* m n) (Number.Natural.* m p)
⊦ ∀m n p.
Number.Natural.* (Number.Natural.+ m n) p =
Number.Natural.+ (Number.Natural.* m p) (Number.Natural.* n p)
⊦ ∀m n p.
Number.Natural.* m n = Number.Natural.* m p ⇔
m = Number.Numeral.zero ∨ n = p
⊦ (∀m. Number.Natural.< m Number.Numeral.zero ⇔ F) ∧
∀m n.
Number.Natural.< m (Number.Natural.suc n) ⇔
m = n ∨ Number.Natural.< m n
⊦ (∀m. Number.Natural.≤ m Number.Numeral.zero ⇔ m = Number.Numeral.zero) ∧
∀m n.
Number.Natural.≤ m (Number.Natural.suc n) ⇔
m = Number.Natural.suc n ∨ Number.Natural.≤ m n
⊦ ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
⊦ ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
⊦ ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
⊦ ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
⊦ (∀n. Number.Natural.+ Number.Numeral.zero n = n) ∧
(∀m. Number.Natural.+ m Number.Numeral.zero = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)
⊦ (∀n. Number.Natural.* Number.Numeral.zero n = Number.Numeral.zero) ∧
(∀m. Number.Natural.* m Number.Numeral.zero = Number.Numeral.zero) ∧
(∀n. Number.Natural.* (Number.Numeral.bit1 Number.Numeral.zero) n = n) ∧
(∀m. Number.Natural.* m (Number.Numeral.bit1 Number.Numeral.zero) = m) ∧
(∀m n.
Number.Natural.* (Number.Natural.suc m) n =
Number.Natural.+ (Number.Natural.* m n) n) ∧
∀m n.
Number.Natural.* m (Number.Natural.suc n) =
Number.Natural.+ m (Number.Natural.* m n)