Package natural-numeral-def: natural-numeral-def
Information
name | natural-numeral-def |
version | 1.5 |
description | natural-numeral-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball natural-numeral-def-1.5.tgz
- Theory file natural-numeral-def.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- Number.Natural.bit0
- Number.Natural.bit1
- Natural
Theorems
⊦ ∀n. Number.Natural.bit1 n = Number.Natural.suc (Number.Natural.bit0 n)
⊦ Number.Natural.bit0 0 = 0 ∧
∀n.
Number.Natural.bit0 (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.suc (Number.Natural.bit0 n))
Input Type Operators
- →
- bool
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- T
- Bool
- Number
- Natural
- Number.Natural.suc
- Number.Natural.zero
- Natural
Assumptions
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (Number.Natural.suc n) = f (fn n) n