name | natural-numeral-thm |
version | 1.2 |
description | natural-numeral-thm |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-07-25 |
show | Data.Bool |
⊦ 1 = Number.Natural.suc 0
⊦ 2 = Number.Natural.suc 1
⊦ T
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. Number.Natural.bit1 n = Number.Natural.suc (Number.Natural.bit0 n)
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ Number.Natural.bit0 0 = 0 ∧
∀n.
Number.Natural.bit0 (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.suc (Number.Natural.bit0 n))