Package natural-order-def: Definition of natural number orderings

Information

namenatural-order-def
version1.14
descriptionDefinition of natural number orderings
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-11-27
requiresbool
natural-thm
showData.Bool
Number.Natural

Files

Defined Constants

Theorems

m. m < 0 F

m. m 0 m = 0

m n. m > n n < m

m n. m n n m

m n. m < suc n m = n m < n

m n. m suc n m = suc n m n

Input Type Operators

Input Constants

Assumptions

T

() = λP. P ((select) P)

() = λp. p = λx. T

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

(∃!) = λP. () P x y. P x P y x = y

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n