Package natural-order-thm: Properties of natural number orderings

Information

namenatural-order-thm
version1.20
descriptionProperties of natural number orderings
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-11-27
requiresbool
natural-def
natural-order-def
showData.Bool
Number.Natural

Files

Theorems

n. 0 n

n. n n

n. ¬(n < n)

n. 0 < suc n

n. n < suc n

n. n suc n

n. 0 < n ¬(n = 0)

m n. m = n m n

m n. m < n m n

m n. m < n n m

m n. m n n < m

m n. m n n m

m n. ¬(m < n n < m)

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. ¬(m < n) n m

m n. ¬(m n) n < m

m n. m < suc n m n

m n. suc m n m < n

m n. suc m < suc n m < n

m n. suc m suc n m n

m n. m n m < n m = n

m n. m < n n < m m = n

m n. m n n m m = n

m n. m < n m n ¬(m = n)

m n p. m < n n < p m < p

m n p. m < n n p m < p

m n p. m n n < p m < p

m n p. m n n p m p

P. (n. (m. m < n P m) P n) n. P n

P. (n. P n) n. P n m. m < n ¬P m

P. (x. P x) (M. x. P x x M) m. P m x. P x x m

Input Type Operators

Input Constants

Assumptions

T

¬F T

¬T F

t. t t

F p. p

t. t ¬t

(¬) = λp. p F

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

t. ¬¬t t

t. (T t) t

t. (t T) t

t. F t F

t. T t t

t. t F F

t. t T t

t. t t t

t. F t T

t. T t t

t. t T T

t. F t t

t. T t T

t. t F t

t. t T T

t. t t t

n. ¬(suc n = 0)

m. m < 0 F

t. (F t) ¬t

t. (t F) ¬t

t. t F ¬t

() = λp q. p q p

t. (t T) (t F)

m. m 0 m = 0

x y. x = y y = x

t1 t2. t1 t2 t2 t1

t1 t2. t1 t2 t2 t1

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

m n. suc m = suc n m = n

() = λp q. r. (p r) (q r) r

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

m n. m < suc n m = n m < n

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

P. (x. y. P x y) y. x. P x (y x)

m n. m suc n m = suc n m n

P. P 0 (n. P n P (suc n)) n. P n

P Q. (x. P x Q x) (x. P x) x. Q x