Package natural-order-thm: Properties of natural number orderings

Information

namenatural-order-thm
version1.36
descriptionProperties of natural number orderings
authorJoe Leslie-Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2012-12-02
requiresbool
natural-def
natural-order-def
showData.Bool
Number.Natural

Files

Theorems

n. 0 n

n. n n

n. ¬(n < n)

n. 0 < suc n

n. n < suc n

n. n suc n

n. 0 < n ¬(n = 0)

m n. m = n m n

m n. m < n m n

m n. m < n n m

m n. m n n < m

m n. m n n m

m n. ¬(m < n n < m)

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. m < n ¬(m = n)

m n. ¬(m < n) n m

m n. ¬(m n) n < m

m n. m < suc n m n

m n. suc m n m < n

m n. suc m < suc n m < n

m n. suc m suc n m n

m n. m n m < n m = n

m n. m < n n < m m = n

m n. m n n m m = n

m n. m < n m n ¬(m = n)

m n p. m < n n < p m < p

m n p. m < n n p m < p

m n p. m n n < p m < p

m n p. m n n p m p

p. (n. (m. m < n p m) p n) n. p n

p. (n. p n) n. p n m. m < n ¬p m

p. (n. p n) (m. n. p n n m) m. p m n. p n n m

External Type Operators

External Constants

Assumptions

¬

¬

t. t t

p. p

t. t ¬t

m. ¬(m < 0)

(¬) = λp. p

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

t. ¬¬t t

t. ( t) t

t. (t ) t

t. t

t. t t

t. t

t. t t

t. t t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t t

n. ¬(suc n = 0)

t. ( t) ¬t

t. (t ) ¬t

t. t ¬t

() = λp q. p q p

t. (t ) (t )

m. m 0 m = 0

x y. x = y y = x

t1 t2. t1 t2 t2 t1

t1 t2. t1 t2 t2 t1

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

t1 t2. ¬t1 ¬t2 t2 t1

m n. suc m = suc n m = n

() = λp q. r. (p r) (q r) r

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

m n. m < suc n m = n m < n

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

p. (x. y. p x y) y. x. p x (y x)

m n. m suc n m = suc n m n

p. p 0 (n. p n p (suc n)) n. p n

p q. (x. p x q x) (x. p x) x. q x