Package natural-prime-sieve-def: Definition of the sieve of Eratosthenes
Information
name | natural-prime-sieve-def |
version | 1.17 |
description | Definition of the sieve of Eratosthenes |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2012-08-13 |
requires | bool list natural natural-prime-stream pair relation |
show | Data.Bool Data.List Data.Pair Number.Natural Number.Natural.Prime.Sieve |
Files
- Package tarball natural-prime-sieve-def-1.17.tgz
- Theory file natural-prime-sieve-def.thy (included in the package tarball)
Defined Type Operator
- Number
- Natural
- Prime
- Sieve
- sieve
- Sieve
- Prime
- Natural
Defined Constants
- Number
- Natural
- Prime
- Sieve
- dest
- increment
- increment.inc
- initial
- invariant
- invariant.inv
- max
- mk
- next
- primes
- Sieve
- Prime
- Natural
Theorems
⊦ ∀a. mk (dest a) = a
⊦ ∀n i. invariant.inv n i []
⊦ initial = mk (1, [])
⊦ ∀s. max s = fst (dest s)
⊦ ∀s. primes s = map fst (snd (dest s))
⊦ ∀r. invariant r ⇔ dest (mk r) = r
⊦ ∀n i. increment.inc n i [] = (⊤, (n, 0, 0) :: [])
⊦ ∀s.
next s =
let (b, s') ← increment s in if b then (max s', s') else next s'
⊦ ∀n ps.
invariant (n, ps) ⇔
¬(n = 0) ∧ map fst ps = Prime.below (n + 1) ∧ invariant.inv n 0 ps
⊦ ∀n i p k j ps.
invariant.inv n i ((p, k, j) :: ps) ⇔
¬(p = 0) ∧ (k + i) mod p = n mod p ∧ invariant.inv n (i + j) ps
⊦ ∀s.
increment s =
let (n, ps) ← dest s in
let n' ← n + 1 in
let (b, ps') ← increment.inc n' 1 ps in
(b, mk (n', ps'))
⊦ ∀n i p k j ps.
increment.inc n i ((p, k, j) :: ps) =
let k' ← (k + i) mod p in
let j' ← j + i in
if k' = 0 then (⊥, (p, 0, j') :: ps)
else let (b, ps') ← increment.inc n j' ps in (b, (p, k', 0) :: ps')
Input Type Operators
- →
- bool
- Data
- List
- list
- Pair
- ×
- List
- Number
- Natural
- natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- List
- ::
- []
- map
- Pair
- ,
- fst
- snd
- Bool
- Number
- Natural
- +
- bit0
- bit1
- mod
- suc
- zero
- Prime
- Prime.below
- Natural
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ bit0 0 = 0
⊦ ⊥ ⇔ ∀p. p
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ Prime.below 2 = []
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. 0 + n = n
⊦ ∀f. map f [] = []
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀x y. fst (x, y) = x
⊦ ∀x y. snd (x, y) = y
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀xy. ∃x y. xy = (x, y)
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. suc m + n = suc (m + n)
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀f. ∃fn. ∀x y. fn (x, y) = f x y
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)