Package natural-sub-def: natural-sub-def

Information

namenatural-sub-def
version1.0
descriptionnatural-sub-def
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-02-19
showData.Bool

Files

Defined Constant

Theorem

(m. Number.Natural.- m Number.Numeral.zero = m)
  m n.
    Number.Natural.- m (Number.Natural.suc n) =
    Number.Natural.pre (Number.Natural.- m n)

Input Type Operators

Input Constants

Assumptions

T

() = λP. P ((select) P)

() = λP. P = λx. T

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

e f.
    fn.
      fn Number.Numeral.zero = e
      n. fn (Number.Natural.suc n) = f (fn n) n