name | natural-sub-def |
version | 1.0 |
description | natural-sub-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ (∀m. Number.Natural.- m Number.Numeral.zero = m) ∧
∀m n.
Number.Natural.- m (Number.Natural.suc n) =
Number.Natural.pre (Number.Natural.- m n)
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λP. P = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀e f.
∃fn.
fn Number.Numeral.zero = e ∧
∀n. fn (Number.Natural.suc n) = f (fn n) n