Package natural-sub-def: natural-sub-def

Information

namenatural-sub-def
version1.4
descriptionnatural-sub-def
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-07-25
showData.Bool

Files

Defined Constant

Theorem

m n. Number.Natural.- (Number.Natural.+ m n) n = m

Input Type Operators

Input Constants

Assumptions

T

() = λP. P ((select) P)

() = λp. p = λx. T

x. x = x T

n. Number.Natural.pre (Number.Natural.suc n) = n

() = λp q. p q p

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

P. P 0 (n. P n P (Number.Natural.suc n)) n. P n

e f. fn. fn 0 = e n. fn (Number.Natural.suc n) = f (fn n) n

(n. Number.Natural.+ 0 n = n) (m. Number.Natural.+ m 0 = m)
  (m n.
     Number.Natural.+ (Number.Natural.suc m) n =
     Number.Natural.suc (Number.Natural.+ m n))
  m n.
    Number.Natural.+ m (Number.Natural.suc n) =
    Number.Natural.suc (Number.Natural.+ m n)