Package natural-sub-def: natural-sub-def
Information
name | natural-sub-def |
version | 1.5 |
description | natural-sub-def |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-09-21 |
show | Data.Bool |
Files
- Package tarball natural-sub-def-1.5.tgz
- Theory file natural-sub-def.thy (included in the package tarball)
Defined Constant
- Number
- Natural
- Number.Natural.-
- Natural
Theorem
⊦ ∀m n. Number.Natural.- (Number.Natural.+ m n) n = m
Input Type Operators
- →
- bool
- Number
- Natural
- Number.Natural.natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- T
- Bool
- Number
- Natural
- Number.Natural.+
- Number.Natural.pre
- Number.Natural.suc
- Number.Natural.zero
- Natural
Assumptions
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. Number.Natural.pre (Number.Natural.suc n) = n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀P. P 0 ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ ∀e f. ∃fn. fn 0 = e ∧ ∀n. fn (Number.Natural.suc n) = f (fn n) n
⊦ (∀n. Number.Natural.+ 0 n = n) ∧ (∀m. Number.Natural.+ m 0 = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)