Package natural-thm: Properties of natural numbers

Information

namenatural-thm
version1.6
descriptionProperties of natural numbers
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-11-27
requiresbool
natural-def
showData.Bool
Number.Natural

Files

Theorems

m. m = 0 n. m = suc n

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

Input Type Operators

Input Constants

Assumptions

T

¬F T

¬T F

F p. p

(¬) = λp. p F

a. ∃!x. x = a

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

t. ¬¬t t

t. F t F

t. T t t

t. F t t

t. T t T

t. t F t

n. ¬(suc n = 0)

t. (F t) ¬t

t. t F ¬t

() = λp q. p q p

t. (t T) (t F)

x y. x = y y = x

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

m n. suc m = suc n m = n

f g. (x. f x = g x) f = g

P a. (x. a = x P x) P a

() = λp q. r. (p r) (q r) r

P. P 0 (n. P n P (suc n)) n. P n

P Q. (x. P x Q x) (x. P x) x. Q x

A B C D. (A B) (C D) A C B D

A B C D. (A B) (C D) A C B D

P. (x. ∃!y. P x y) f. x y. P x y f x = y

P. (∃!x. P x) (x. P x) x x'. P x P x' x = x'