Package option-dest-def: Definition of option type destructors
Information
name | option-dest-def |
version | 1.40 |
description | Definition of option type destructors |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2012-05-18 |
requires | bool option-def |
show | Data.Bool Data.Option |
Files
- Package tarball option-dest-def-1.40.tgz
- Theory file option-dest-def.thy (included in the package tarball)
Defined Constants
- Data
- Option
- case
- isNone
- isSome
- Option
Theorems
⊦ isNone none
⊦ ¬isSome none
⊦ ∀a. isSome (some a)
⊦ ∀a. ¬isNone (some a)
⊦ ∀b f. case b f none = b
⊦ ∀b f a. case b f (some a) = f a
Input Type Operators
- →
- bool
- Data
- Option
- option
- Option
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ¬
- ⊥
- ⊤
- Option
- none
- some
- Bool
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀b f. ∃fn. fn none = b ∧ ∀a. fn (some a) = f a