Package option-map-def: Definition of the option map function
Information
name | option-map-def |
version | 1.10 |
description | Definition of the option map function |
author | Joe Leslie-Hurd <joe@gilith.com> |
license | MIT |
provenance | HOL Light theory extracted on 2012-11-10 |
requires | bool option-def |
show | Data.Bool Data.Option |
Files
- Package tarball option-map-def-1.10.tgz
- Theory file option-map-def.thy (included in the package tarball)
Defined Constant
- Data
- Option
- map
- Option
Theorems
⊦ ∀f. map f none = none
⊦ ∀f a. map f (some a) = some (f a)
Input Type Operators
- →
- bool
- Data
- Option
- option
- Option
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ⊤
- Option
- none
- some
- Bool
Assumptions
⊦ ⊤
⊦ (∃) = λp. p ((select) p)
⊦ (∀) = λp. p = λx. ⊤
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀b f. ∃fn. fn none = b ∧ ∀a. fn (some a) = f a