Package pair: Basic theory of product types

Information

namepair
version1.0
descriptionBasic theory of product types
authorJoe Hurd <joe@gilith.com>
licenseMIT
showData.Bool
Data.Pair

Files

Defined Type Operator

Defined Constants

Theorems

x. (fst x, snd x) = x

x y. fst (x, y) = x

x y. snd (x, y) = y

p. x y. p = (x, y)

P. (x y. P (x, y)) p. P p

P. (p. P p) p1 p2. P (p1, p2)

P. (p. P p) p1 p2. P (p1, p2)

PAIR'. fn. a0 a1. fn (a0, a1) = PAIR' a0 a1

t. (λp. t p) = λ(x, y). t (x, y)

x y a b. (x, y) = (a, b) x = a y = b

Input Type Operators

Input Constants

Assumptions

T

F p. p

t. t ¬t

(¬) = λp. p F

() = λP. P ((select) P)

t. (x. t) t

t. (λx. t x) = t

() = λP. P = λx. T

x. x = x T

() = λp q. p q p

t. (t T) (t F)

P x. P x P ((select) P)

(¬T F) (¬F T)

f y. (λx. f x) y = f y

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

f g. f = g x. f x = g x

() = λp q. r. (p r) (q r) r

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

t1 t2 t3. t1 t2 t3 (t1 t2) t3

P x. (y. P y y = x) (select) P = x

P. (x. y. P x y) y. x. P x (y x)

(t. ¬¬t t) (¬T F) (¬F T)

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)