name | pair-induct |
version | 1.0 |
description | pair-induct |
author | Joe Hurd <joe@gilith.com> |
license | HOLLight |
provenance | HOL Light theory extracted on 2011-02-19 |
show | Data.Bool |
⊦ ∀x. Data.Pair., (Data.Pair.fst x) (Data.Pair.snd x) = x
⊦ ∀P. (∀x y. P (Data.Pair., x y)) ⇒ ∀p. P p
⊦ ∀PAIR'. ∃fn. ∀a0 a1. fn (Data.Pair., a0 a1) = PAIR' a0 a1
⊦ T
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. x = x ⇔ T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀x y. Data.Pair.fst (Data.Pair., x y) = x
⊦ ∀x y. Data.Pair.snd (Data.Pair., x y) = y
⊦ ∀p. ∃x y. p = Data.Pair., x y
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q