Package pair-thm: pair-thm

Information

namepair-thm
version1.3
descriptionpair-thm
authorJoe Hurd <joe@gilith.com>
licenseHOLLight
provenanceHOL Light theory extracted on 2011-07-20
showData.Bool

Files

Theorems

x. Data.Pair., (Data.Pair.fst x) (Data.Pair.snd x) = x

P. (p. P p) p1 p2. P (Data.Pair., p1 p2)

P. (p. P p) p1 p2. P (Data.Pair., p1 p2)

P. (x y. P (Data.Pair., x y)) p. P p

PAIR'. fn. a0 a1. fn (Data.Pair., a0 a1) = PAIR' a0 a1

t. (λp. t p) = λ(Data.Pair., x y). t (Data.Pair., x y)

Input Type Operators

Input Constants

Assumptions

T

F p. p

t. t ¬t

(~) = λp. p F

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

x. x = x T

() = λp q. p q p

t. (t T) (t F)

x y. Data.Pair.fst (Data.Pair., x y) = x

x y. Data.Pair.snd (Data.Pair., x y) = y

p x. p x p ((select) p)

(¬T F) (¬F T)

f y. (let xyf x) = f y

p. x y. p = Data.Pair., x y

() = λp q. (λf. f p q) = λf. f T T

P. ¬(x. P x) x. ¬P x

P. ¬(x. P x) x. ¬P x

() = λP. q. (x. P x q) q

f g. f = g x. f x = g x

() = λp q. r. (p r) (q r) r

P Q. P (x. Q x) x. P Q x

P Q. P (x. Q x) x. P Q x

P Q. (x. P x) Q x. P x Q

P Q. (x. P x) Q x. P x Q

(t. ¬¬t t) (¬T F) (¬F T)

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)