Package parser: Basic theory of parsers

Information

nameparser
version1.5
descriptionBasic theory of parsers
authorJoe Hurd <joe@gilith.com>
licenseMIT
show Data.Bool
Data.List
Data.Option
Data.Pair
Parser
Relation

Files

Defined Type Operators

Defined Constants

Theorems

isParser parseAll.pa

isParser parseNone.pn

wellFounded Stream.isProperSuffix

parseAll = mkParser parseAll.pa

parseNone = mkParser parseNone.pn

destParser parseNone = parseNone.pn

x. Stream.isSuffix x x

p. isParser (destParser p)

x. ¬Stream.isProperSuffix x x

inverse parseAll (λa. a :: [])

strongInverse parseAll (λa. a :: [])

s. parse parseNone s = none

pb pc. isParser (parsePair.pbc pb pc)

f p. isParser (partialMap.pf f p)

l. Stream.fromList l = Stream.append l Stream.eof

l. Stream.length (Stream.fromList l) = length l

l. Stream.toList (Stream.fromList l) = some l

f. parseOption f = partialMap f parseAll

a s. parseNone.pn a s = none

x y. Stream.isProperSuffix x y Stream.isSuffix x y

p s.
    Number.Natural.≤ (Stream.length (parseStream p s)) (Stream.length s)

a s. parseAll.pa a s = some (a, s)

s. case T (λl. length l = Stream.length s) (Stream.toList s)

pb pc. parsePair pb pc = mkParser (parsePair.pbc pb pc)

pb pc. destParser (parsePair pb pc) = parsePair.pbc pb pc

f p. partialMap f p = mkParser (partialMap.pf f p)

f p. destParser (partialMap f p) = partialMap.pf f p

parse parseAll = Stream.case none none (λa s. some (a, s))

x y.
    Stream.isProperSuffix x y
    Number.Natural.< (Stream.length x) (Stream.length y)

x y.
    Stream.isSuffix x y
    Number.Natural.≤ (Stream.length x) (Stream.length y)

p. parseSome p = parseOption (λa. if p a then some a else none)

f p. map f p = partialMap (λb. some (f b)) p

l s.
    Stream.length (Stream.append l s) =
    Number.Natural.+ (length l) (Stream.length s)

s s'. Stream.isSuffix s s' s = s' Stream.isProperSuffix s s'

x y z. Stream.append (x @ y) z = Stream.append x (Stream.append y z)

x y z.
    Stream.isProperSuffix x y Stream.isProperSuffix y z
    Stream.isProperSuffix x z

x y z. Stream.isSuffix x y Stream.isSuffix y z Stream.isSuffix x z

l s.
    Stream.toList (Stream.append l s) =
    case none (λls. some (l @ ls)) (Stream.toList s)

(a. mkParser (destParser a) = a)
  r. isParser r destParser (mkParser r) = r

x. x = Stream.error x = Stream.eof a0 a1. x = Stream.stream a0 a1

p.
    parse (parseSome p) =
    Stream.case none none (λa s. if p a then some (a, s) else none)

f.
    parse (parseOption f) =
    Stream.case none none (λa s. case none (λb. some (b, s)) (f a))

p. (x. (y. Stream.isProperSuffix y x p y) p x) x. p x

p a s. destParser (parseSome p) a s = if p a then some (a, s) else none

p e l.
    inverse p e
    parseStream p (Stream.fromList (concat (map e l))) = Stream.fromList l

f a s.
    destParser (parseOption f) a s = case none (λb. some (b, s)) (f a)

f e. (b. f (e b) = some b) inverse (parseOption f) (λb. e b :: [])

p a s b s'. destParser p a s = some (b, s') Stream.isSuffix s' s

a0 a1 a0' a1'.
    Stream.stream a0 a1 = Stream.stream a0' a1' a0 = a0' a1 = a1'

p e. inverse p e x s. parse p (Stream.append (e x) s) = some (x, s)

Stream.length Stream.error = Number.Numeral.zero
  Stream.length Stream.eof = Number.Numeral.zero
  a s.
    Stream.length (Stream.stream a s) =
    Number.Natural.suc (Stream.length s)

p e x s.
    inverse p e
    parseStream p (Stream.append (e x) s) =
    Stream.stream x (parseStream p s)

P.
    P Stream.error P Stream.eof
    (a0 a1. P a1 P (Stream.stream a0 a1)) x. P x

p e s.
    strongInverse p e
    case T (λl. Stream.toList s = some (concat (map e l)))
      (Stream.toList (parseStream p s))

(s. Stream.append [] s = s)
  h t s. Stream.append (h :: t) s = Stream.stream h (Stream.append t s)

p s.
    parse p s = none
    b s'. parse p s = some (b, s') Stream.isProperSuffix s' s

¬(Stream.error = Stream.eof)
  (a0' a1'. ¬(Stream.error = Stream.stream a0' a1'))
  a0' a1'. ¬(Stream.eof = Stream.stream a0' a1')

f p g e.
    inverse p e (b. f (g b) = b) inverse (map f p) (λc. e (g c))

p.
    isParser p x xs. case T (λ(y, xs'). Stream.isSuffix xs' xs) (p x xs)

f p g e.
    inverse p e (b. f (g b) = some b)
    inverse (partialMap f p) (λc. e (g c))

p a s.
    destParser p a s = none
    b s'. destParser p a s = some (b, s') Stream.isSuffix s' s

Stream.toList Stream.error = none Stream.toList Stream.eof = some []
  a s.
    Stream.toList (Stream.stream a s) =
    case none (λl. some (a :: l)) (Stream.toList s)

p a s.
    isParser p
    p a s = none b s'. p a s = some (b, s') Stream.isSuffix s' s

f0 f1 f2.
    fn.
      fn Stream.error = f0 fn Stream.eof = f1
      a0 a1. fn (Stream.stream a0 a1) = f2 a0 a1 (fn a1)

(p. parse p Stream.error = none) (p. parse p Stream.eof = none)
  p a s. parse p (Stream.stream a s) = destParser p a s

f p s.
    parse (map f p) s = case none (λ(b, s'). some (f b, s')) (parse p s)

p e.
    strongInverse p e
    inverse p e
    s x s'. parse p s = some (x, s') s = Stream.append (e x) s'

pb pc eb ec.
    inverse pb eb inverse pc ec
    inverse (parsePair pb pc) (λ(b, c). eb b @ ec c)

pb pc eb ec.
    strongInverse pb eb strongInverse pc ec
    strongInverse (parsePair pb pc) (λ(b, c). eb b @ ec c)

(s. Stream.isProperSuffix s Stream.error F)
  (s. Stream.isProperSuffix s Stream.eof F)
  s a s'.
    Stream.isProperSuffix s (Stream.stream a s')
    s = s' Stream.isProperSuffix s s'

f p a s.
    destParser (map f p) a s =
    case none (λ(b, s'). some (f b, s')) (destParser p a s)

f p s.
    parse (partialMap f p) s =
    case none (λ(b, s'). case none (λc. some (c, s')) (f b)) (parse p s)

h.
    (f g s.
       (s'. Stream.isProperSuffix s' s f s' = g s') h f s = h g s)
    f. s. f s = h f s

f p a s.
    partialMap.pf f p a s =
    case none (λ(b, s'). case none (λc. some (c, s')) (f b))
      (destParser p a s)

f e.
    (b. f (e b) = some b)
    (a1 a2 b. f a1 = some b f a2 = some b a1 = a2)
    strongInverse (parseOption f) (λb. e b :: [])

p.
    parseStream p Stream.error = Stream.error
    parseStream p Stream.eof = Stream.eof
    a s.
      parseStream p (Stream.stream a s) =
      case Stream.error (λ(b, s'). Stream.stream b (parseStream p s'))
        (destParser p a s)

f p g e.
    strongInverse p e (b. f (g b) = b)
    (b1 b2 c. f b1 = c f b2 = c b1 = b2)
    strongInverse (map f p) (λc. e (g c))

(e b f. Stream.case e b f Stream.error = e)
  (e b f. Stream.case e b f Stream.eof = b)
  e b f a s. Stream.case e b f (Stream.stream a s) = f a s

pb pc s.
    parse (parsePair pb pc) s =
    case none
      (λ(b, s'). case none (λ(c, s''). some ((b, c), s'')) (parse pc s'))
      (parse pb s)

f p g e.
    strongInverse p e (b. f (g b) = some b)
    (b1 b2 c. f b1 = some c f b2 = some c b1 = b2)
    strongInverse (partialMap f p) (λc. e (g c))

pb pc a s.
    parsePair.pbc pb pc a s =
    case none
      (λ(b, s'). case none (λ(c, s''). some ((b, c), s'')) (parse pc s'))
      (destParser pb a s)

Input Type Operators

Input Constants

Assumptions

T

n. Number.Natural.≤ Number.Numeral.zero n

n. Number.Natural.≤ n n

m. wellFounded (measure m)

F p. p

(¬) = λp. p F

() = λP. P ((select) P)

a. ∃!x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λP. P = λx. T

a'. ¬(none = some a')

x. x = x T

n. ¬(Number.Natural.suc n = Number.Numeral.zero)

m. Number.Natural.+ m Number.Numeral.zero = m

n.
    Number.Natural.even
      (Number.Natural.*
         (Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) n)

n. Number.Numeral.bit0 n = Number.Natural.+ n n

x. case none some x = x

() = λp q. p q p

t. (t T) (t F)

n. Number.Numeral.bit1 n = Number.Natural.suc (Number.Natural.+ n n)

P x. P x P ((select) P)

(¬T F) (¬F T)

p. x y. p = (x, y)

t1 t2. t1 t2 t2 t1

m n. Number.Natural.< m n Number.Natural.≤ m n

<< x. wellFounded << ¬<< x x

n.
    Number.Natural.*
      (Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) n =
    Number.Natural.+ n n

m. measure m = λx y. Number.Natural.< (m x) (m y)

m n. ¬(Number.Natural.< m n Number.Natural.≤ n m)

m n. ¬(Number.Natural.≤ m n Number.Natural.< n m)

m n. Number.Natural.< m (Number.Natural.suc n) Number.Natural.≤ m n

m n. Number.Natural.≤ (Number.Natural.suc m) n Number.Natural.< m n

x. x = none a. x = some a

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

a a'. some a = some a' a = a'

m n. Number.Natural.suc m = Number.Natural.suc n m = n

m n.
    Number.Natural.≤ (Number.Natural.suc m) (Number.Natural.suc n)
    Number.Natural.≤ m n

m n.
    Number.Natural.even (Number.Natural.* m n)
    Number.Natural.even m Number.Natural.even n

m n.
    Number.Natural.even (Number.Natural.+ m n) Number.Natural.even m
    Number.Natural.even n

l. l = [] h t. l = h :: t

f g. f = g x. f x = g x

P a. (x. a = x P x) P a

() = λp q. r. (p r) (q r) r

(Number.Natural.even Number.Numeral.zero T)
  n. Number.Natural.even (Number.Natural.suc n) ¬Number.Natural.even n

m n. Number.Natural.≤ m n Number.Natural.< m n m = n

m n. Number.Natural.≤ m n Number.Natural.≤ n m m = n

PAIR'. fn. a0 a1. fn (a0, a1) = PAIR' a0 a1

P Q. (x. P Q x) P x. Q x

t1 t2 t3. t1 t2 t3 (t1 t2) t3

t1 t2 t3. t1 t2 t3 (t1 t2) t3

m n p.
    Number.Natural.* m (Number.Natural.* n p) =
    Number.Natural.* (Number.Natural.* m n) p

m n p. Number.Natural.+ m p = Number.Natural.+ n p m = n

m n p.
    Number.Natural.≤ m n Number.Natural.≤ n p Number.Natural.≤ m p

P x. (y. P y y = x) (select) P = x

P. (x. y. P x y) y. x. P x (y x)

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

m n.
    Number.Natural.* m n = Number.Numeral.zero
    m = Number.Numeral.zero n = Number.Numeral.zero

length [] = Number.Numeral.zero
  h t. length (h :: t) = Number.Natural.suc (length t)

P.
    P Number.Numeral.zero (n. P n P (Number.Natural.suc n)) n. P n

(t. ¬¬t t) (¬T F) (¬F T)

m n.
    Number.Natural.exp m n = Number.Numeral.zero
    m = Number.Numeral.zero ¬(n = Number.Numeral.zero)

concat [] = [] h t. concat (h :: t) = h @ concat t

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

e f.
    fn.
      fn Number.Numeral.zero = e
      n. fn (Number.Natural.suc n) = f (fn n) n

P. P [] (a0 a1. P a1 P (a0 :: a1)) x. P x

<< <<<. (x y. << x y <<< x y) wellFounded <<< wellFounded <<

m n p.
    Number.Natural.* m n = Number.Natural.* m p
    m = Number.Numeral.zero n = p

m n p.
    Number.Natural.≤ (Number.Natural.* m n) (Number.Natural.* m p)
    m = Number.Numeral.zero Number.Natural.≤ n p

m n p.
    Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p)
    ¬(m = Number.Numeral.zero) Number.Natural.< n p

x y a b. (x, y) = (a, b) x = a y = b

A B C D. (A B) (C D) A C B D

A B C D. (A B) (C D) A C B D

P. (x. ∃!y. P x y) f. x y. P x y f x = y

(m.
     Number.Natural.exp m Number.Numeral.zero =
     Number.Numeral.bit1 Number.Numeral.zero)
  m n.
    Number.Natural.exp m (Number.Natural.suc n) =
    Number.Natural.* m (Number.Natural.exp m n)

P c x y. P (if c then x else y) (c P x) (¬c P y)

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

P. (∃!x. P x) (x. P x) x x'. P x P x' x = x'

<<. wellFounded << P. (x. (y. << y x P y) P x) x. P x

(b f. case b f none = b) b f a. case b f (some a) = f a

(l. [] @ l = l) h t l. (h :: t) @ l = h :: t @ l

(f. map f [] = []) f h t. map f (h :: t) = f h :: map f t

(m. Number.Natural.≤ m Number.Numeral.zero m = Number.Numeral.zero)
  m n.
    Number.Natural.≤ m (Number.Natural.suc n)
    m = Number.Natural.suc n Number.Natural.≤ m n

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

<<.
    wellFounded <<
    H.
      (f g x. (z. << z x f z = g z) H f x = H g x)
      f. x. f x = H f x

(n. Number.Natural.+ Number.Numeral.zero n = n)
  (m. Number.Natural.+ m Number.Numeral.zero = m)
  (m n.
     Number.Natural.+ (Number.Natural.suc m) n =
     Number.Natural.suc (Number.Natural.+ m n))
  m n.
    Number.Natural.+ m (Number.Natural.suc n) =
    Number.Natural.suc (Number.Natural.+ m n)

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)