Package parser: Stream parsers

Information

nameparser
version1.54
descriptionStream parsers
authorJoe Hurd <joe@gilith.com>
licenseMIT
requiresbool
function
pair
natural
relation
option
list
showData.Bool
Data.List
Data.Option
Data.Pair
Function
Number.Natural
Parser
Parser.Stream
Relation

Files

Defined Type Operators

Defined Constants

Theorems

isParser parseAll.pa

isParser parseNone.pn

wellFounded isProperSuffix

¬(error = eof)

parseAll = mkParser parseAll.pa

parseNone = mkParser parseNone.pn

length eof = 0

length error = 0

toList error = none

destParser parseNone = parseNone.pn

x. isSuffix x x

p. isParser (destParser p)

toList eof = some []

s. ¬isProperSuffix s eof

s. ¬isProperSuffix s error

x. ¬isProperSuffix x x

inverse parseAll (λa. a :: [])

strongInverse parseAll (λa. a :: [])

s. append [] s = s

s. parse parseNone s = none

p. parseStream p eof = eof

p. parseStream p error = error

a. mkParser (destParser a) = a

p. parse p eof = none

p. parse p error = none

pb pc. isParser (parsePair.pbc pb pc)

f p. isParser (partialMap.pf f p)

l. fromList l = append l eof

l. length (fromList l) = length l

l. toList (fromList l) = some l

f. parseOption f = partialMap f parseAll

a s. parseNone.pn a s = none

a0' a1'. ¬(eof = stream a0' a1')

a0' a1'. ¬(error = stream a0' a1')

r. isParser r destParser (mkParser r) = r

x y. isProperSuffix x y isSuffix x y

p s. length (parseStream p s) length s

a s. parseAll.pa a s = some (a, s)

a s. length (stream a s) = suc (length s)

s. case toList s of none | some l length l = length s

pb pc. parsePair pb pc = mkParser (parsePair.pbc pb pc)

pb pc. destParser (parsePair pb pc) = parsePair.pbc pb pc

f p. partialMap f p = mkParser (partialMap.pf f p)

f p. destParser (partialMap f p) = partialMap.pf f p

parse parseAll = case none none (λa s. some (a, s))

e b f. case e b f eof = b

e b f. case e b f error = e

x y. isProperSuffix x y length x < length y

x y. isSuffix x y length x length y

p. parseSome p = parseOption (λa. if p a then some a else none)

f p. map f p = partialMap (λb. some (f b)) p

l s. length (append l s) = length l + length s

s s'. isSuffix s s' s = s' isProperSuffix s s'

p a s. parse p (stream a s) = destParser p a s

h t s. append (h :: t) s = stream h (append t s)

x y z. append (x @ y) z = append x (append y z)

x y z. isProperSuffix x y isProperSuffix y z isProperSuffix x z

x y z. isSuffix x y isSuffix y z isSuffix x z

a s.
    toList (stream a s) =
    case toList s of none none | some l some (a :: l)

l s.
    toList (append l s) =
    case toList s of none none | some ls some (l @ ls)

s a s'. isProperSuffix s (stream a s') s = s' isProperSuffix s s'

x. x = error x = eof a0 a1. x = stream a0 a1

p.
    parse (parseSome p) =
    case none none (λa s. if p a then some (a, s) else none)

f.
    parse (parseOption f) =
    case none none (λa s. case f a of none none | some b some (b, s))

p. (x. (y. isProperSuffix y x p y) p x) x. p x

e b f a s. case e b f (stream a s) = f a s

p a s. destParser (parseSome p) a s = if p a then some (a, s) else none

p e l.
    inverse p e parseStream p (fromList (concat (map e l))) = fromList l

f a s.
    destParser (parseOption f) a s =
    case f a of none none | some b some (b, s)

f e. (b. f (e b) = some b) inverse (parseOption f) (λb. e b :: [])

p a s b s'. destParser p a s = some (b, s') isSuffix s' s

a0 a1 a0' a1'. stream a0 a1 = stream a0' a1' a0 = a0' a1 = a1'

p e. inverse p e x s. parse p (append (e x) s) = some (x, s)

p e x s.
    inverse p e
    parseStream p (append (e x) s) = stream x (parseStream p s)

P. P error P eof (a0 a1. P a1 P (stream a0 a1)) x. P x

p e s.
    strongInverse p e
    case toList (parseStream p s) of
      none
    | some l toList s = some (concat (map e l))

p s.
    parse p s = none
    b s'. parse p s = some (b, s') isProperSuffix s' s

f p g e.
    inverse p e (b. f (g b) = b) inverse (map f p) (λc. e (g c))

p.
    isParser p
    x xs. case p x xs of none | some (y, xs') isSuffix xs' xs

f p g e.
    inverse p e (b. f (g b) = some b)
    inverse (partialMap f p) (λc. e (g c))

p a s.
    destParser p a s = none
    b s'. destParser p a s = some (b, s') isSuffix s' s

p a s.
    isParser p p a s = none b s'. p a s = some (b, s') isSuffix s' s

f0 f1 f2.
    fn.
      fn error = f0 fn eof = f1
      a0 a1. fn (stream a0 a1) = f2 a0 a1 (fn a1)

f p s.
    parse (map f p) s =
    case parse p s of none none | some (b, s') some (f b, s')

p e.
    strongInverse p e
    inverse p e s x s'. parse p s = some (x, s') s = append (e x) s'

p a s.
    parseStream p (stream a s) =
    case destParser p a s of
      none error
    | some (b, s') stream b (parseStream p s')

pb pc eb ec.
    inverse pb eb inverse pc ec
    inverse (parsePair pb pc) (λ(b, c). eb b @ ec c)

pb pc eb ec.
    strongInverse pb eb strongInverse pc ec
    strongInverse (parsePair pb pc) (λ(b, c). eb b @ ec c)

f p a s.
    destParser (map f p) a s =
    case destParser p a s of none none | some (b, s') some (f b, s')

f p s.
    parse (partialMap f p) s =
    case parse p s of
      none none
    | some (b, s') case f b of none none | some c some (c, s')

h.
    (f g s. (s'. isProperSuffix s' s f s' = g s') h f s = h g s)
    f. s. f s = h f s

f p a s.
    partialMap.pf f p a s =
    case destParser p a s of
      none none
    | some (b, s') case f b of none none | some c some (c, s')

f e.
    (b. f (e b) = some b)
    (a1 a2 b. f a1 = some b f a2 = some b a1 = a2)
    strongInverse (parseOption f) (λb. e b :: [])

f p g e.
    strongInverse p e (b. f (g b) = b)
    (b1 b2 c. f b1 = c f b2 = c b1 = b2)
    strongInverse (map f p) (λc. e (g c))

pb pc s.
    parse (parsePair pb pc) s =
    case parse pb s of
      none none
    | some (b, s')
        case parse pc s' of
          none none
        | some (c, s'') some ((b, c), s'')

f p g e.
    strongInverse p e (b. f (g b) = some b)
    (b1 b2 c. f b1 = some c f b2 = some c b1 = b2)
    strongInverse (partialMap f p) (λc. e (g c))

pb pc a s.
    parsePair.pbc pb pc a s =
    case destParser pb a s of
      none none
    | some (b, s')
        case parse pc s' of
          none none
        | some (c, s'') some ((b, c), s'')

Input Type Operators

Input Constants

Assumptions

¬

¬

length [] = 0

bit0 0 = 0

concat [] = []

t. t t

n. 0 n

n. n n

m. wellFounded (measure m)

p. p

x. id x = x

(¬) = λp. p

() = λp. p ((select) p)

a. ∃!x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

a'. ¬(none = some a')

t. ¬¬t t

t. ( t) t

t. (t ) t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

n. ¬(suc n = 0)

n. 0 + n = n

m. m + 0 = m

l. [] @ l = l

f. map f [] = []

r. wellFounded r irreflexive r

t. ( t) ¬t

t. (t ) ¬t

t. t ¬t

n. even (2 * n)

n. bit1 n = suc (bit0 n)

m. m ^ 0 = 1

x. case none some x = x

() = λp q. p q p

t. (t ) (t )

n. even (suc n) ¬even n

m. m 0 m = 0

t1 t2. (if then t1 else t2) = t2

t1 t2. (if then t1 else t2) = t1

b f. case b f none = b

p x. p x p ((select) p)

n. bit0 (suc n) = suc (suc (bit0 n))

f y. (let x y in f x) = f y

xy. x y. xy = (x, y)

x y. x = y y = x

t1 t2. t1 t2 t2 t1

m n. m < n m n

r x. irreflexive r ¬r x x

n. 2 * n = n + n

h t. length (h :: t) = suc (length t)

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. m < suc n m n

m n. suc m n m < n

x. x = none a. x = some a

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

a a'. some a = some a' a = a'

t1 t2. ¬(t1 t2) t1 ¬t2

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. suc m = suc n m = n

m n. suc m suc n m n

h t. concat (h :: t) = h @ concat t

r s. subrelation r s wellFounded s wellFounded r

b f a. case b f (some a) = f a

t1 t2. ¬(t1 t2) ¬t1 ¬t2

m n. even (m * n) even m even n

m n. even (m + n) even m even n

m n. m ^ suc n = m * m ^ n

l. l = [] h t. l = h :: t

f g. (x. f x = g x) f = g

p a. (x. a = x p x) p a

() = λp q. r. (p r) (q r) r

m n. m n m < n m = n

m n. m n n m m = n

PAIR'. fn. a0 a1. fn (a0, a1) = PAIR' a0 a1

m x y. measure m x y m x < m y

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

t1 t2 t3. (t1 t2) t3 t1 t2 t3

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m * (n * p) = m * n * p

m n p. m + p = n + p m = n

m n p. m n n p m p

l h t. (h :: t) @ l = h :: t @ l

p x. (y. p y y = x) (select) p = x

p. (x. y. p x y) y. x. p x (y x)

m n. m suc n m = suc n m n

m n. m * n = 0 m = 0 n = 0

f h t. map f (h :: t) = f h :: map f t

P. P 0 (n. P n P (suc n)) n. P n

m n. m ^ n = 0 m = 0 ¬(n = 0)

r s. subrelation r s x y. r x y s x y

(∃!) = λp. () p x y. p x p y x = y

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x) (x. q x) x. p x q x

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

P. P [] (a0 a1. P a1 P (a0 :: a1)) x. P x

m n p. m * n = m * p m = 0 n = p

m n p. m * n m * p m = 0 n p

m n p. m * n < m * p ¬(m = 0) n < p

x y a b. (x, y) = (a, b) x = a y = b

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p2 p1) (q1 q2) (p1 q1) p2 q2

p. (x. ∃!y. p x y) f. x y. p x y f x = y

p c x y. p (if c then x else y) (c p x) (¬c p y)

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

p. (∃!x. p x) (x. p x) x x'. p x p x' x = x'

r. wellFounded r p. (x. (y. r y x p y) p x) x. p x