Package parser: Stream parsers
Information
name | parser |
version | 1.71 |
description | Stream parsers |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
requires | bool function list natural option pair relation |
show | Data.Bool Data.List Data.Option Data.Pair Function Number.Natural Parser Parser.Stream Relation |
Files
- Package tarball parser-1.71.tgz
- Theory file parser.thy (included in the package tarball)
Defined Type Operators
- Parser
- parser
- Stream
- stream
Defined Constants
- Parser
- destParser
- inverse
- isParser
- map
- mkParser
- parse
- parseAll
- parseAll.pa
- parseNone
- parseNone.pn
- parseOption
- parsePair
- parsePair.pbc
- parseSome
- parseStream
- partialMap
- partialMap.pf
- strongInverse
- Stream
- append
- case
- cons
- eof
- error
- fromList
- fromRandom
- isProperSuffix
- isSuffix
- length
- toList
Theorems
⊦ isParser parseAll.pa
⊦ isParser parseNone.pn
⊦ wellFounded isProperSuffix
⊦ ¬(error = eof)
⊦ parseAll = mkParser parseAll.pa
⊦ parseNone = mkParser parseNone.pn
⊦ length eof = 0
⊦ length error = 0
⊦ toList error = none
⊦ destParser parseNone = parseNone.pn
⊦ ∀x. isSuffix x x
⊦ ∀p. isParser (destParser p)
⊦ toList eof = some []
⊦ ∀s. ¬isProperSuffix s eof
⊦ ∀s. ¬isProperSuffix s error
⊦ ∀x. ¬isProperSuffix x x
⊦ inverse parseAll (λa. a :: [])
⊦ strongInverse parseAll (λa. a :: [])
⊦ ∀s. append [] s = s
⊦ ∀s. parse parseNone s = none
⊦ ∀p. parseStream p eof = eof
⊦ ∀p. parseStream p error = error
⊦ ∀a. mkParser (destParser a) = a
⊦ ∀p. parse p eof = none
⊦ ∀p. parse p error = none
⊦ ∀pb pc. isParser (parsePair.pbc pb pc)
⊦ ∀f p. isParser (partialMap.pf f p)
⊦ ∀l. fromList l = append l eof
⊦ ∀l. length (fromList l) = length l
⊦ ∀l. toList (fromList l) = some l
⊦ ∀f. parseOption f = partialMap f parseAll
⊦ ∀a s. parseNone.pn a s = none
⊦ ∀a0' a1'. ¬(eof = cons a0' a1')
⊦ ∀a0' a1'. ¬(error = cons a0' a1')
⊦ ∀r. isParser r ⇔ destParser (mkParser r) = r
⊦ ∀x y. isProperSuffix x y ⇒ isSuffix x y
⊦ ∀p s. length (parseStream p s) ≤ length s
⊦ ∀a s. parseAll.pa a s = some (a, s)
⊦ ∀a s. length (cons a s) = suc (length s)
⊦ ∀s. case toList s of none → ⊤ | some l → length l = length s
⊦ ∀pb pc. parsePair pb pc = mkParser (parsePair.pbc pb pc)
⊦ ∀pb pc. destParser (parsePair pb pc) = parsePair.pbc pb pc
⊦ ∀f p. partialMap f p = mkParser (partialMap.pf f p)
⊦ ∀f p. destParser (partialMap f p) = partialMap.pf f p
⊦ parse parseAll = case none none (λa s. some (a, s))
⊦ ∀e b f. case e b f eof = b
⊦ ∀e b f. case e b f error = e
⊦ ∀x y. isProperSuffix x y ⇒ length x < length y
⊦ ∀x y. isSuffix x y ⇒ length x ≤ length y
⊦ ∀p. parseSome p = parseOption (λa. if p a then some a else none)
⊦ ∀f p. map f p = partialMap (λb. some (f b)) p
⊦ ∀l s. length (append l s) = length l + length s
⊦ ∀s s'. isSuffix s s' ⇔ s = s' ∨ isProperSuffix s s'
⊦ ∀p a s. parse p (cons a s) = destParser p a s
⊦ ∀h t s. append (h :: t) s = cons h (append t s)
⊦ ∀x y z. append (x @ y) z = append x (append y z)
⊦ ∀x y z. isProperSuffix x y ∧ isProperSuffix y z ⇒ isProperSuffix x z
⊦ ∀x y z. isSuffix x y ∧ isSuffix y z ⇒ isSuffix x z
⊦ ∀a s.
toList (cons a s) =
case toList s of none → none | some l → some (a :: l)
⊦ ∀l s.
toList (append l s) =
case toList s of none → none | some ls → some (l @ ls)
⊦ ∀s a s'. isProperSuffix s (cons a s') ⇔ s = s' ∨ isProperSuffix s s'
⊦ ∀x. x = error ∨ x = eof ∨ ∃a0 a1. x = cons a0 a1
⊦ ∀p.
parse (parseSome p) =
case none none (λa s. if p a then some (a, s) else none)
⊦ ∀f.
parse (parseOption f) =
case none none (λa s. case f a of none → none | some b → some (b, s))
⊦ ∀p. (∀x. (∀y. isProperSuffix y x ⇒ p y) ⇒ p x) ⇒ ∀x. p x
⊦ ∀e b f a s. case e b f (cons a s) = f a s
⊦ ∀p a s. destParser (parseSome p) a s = if p a then some (a, s) else none
⊦ ∀p e l.
inverse p e ⇒ parseStream p (fromList (concat (map e l))) = fromList l
⊦ ∀f a s.
destParser (parseOption f) a s =
case f a of none → none | some b → some (b, s)
⊦ ∀f e. (∀b. f (e b) = some b) ⇒ inverse (parseOption f) (λb. e b :: [])
⊦ ∀p a s b s'. destParser p a s = some (b, s') ⇒ isSuffix s' s
⊦ ∀a0 a1 a0' a1'. cons a0 a1 = cons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
⊦ ∀p e. inverse p e ⇔ ∀x s. parse p (append (e x) s) = some (x, s)
⊦ ∀p e x s.
inverse p e ⇒ parseStream p (append (e x) s) = cons x (parseStream p s)
⊦ ∀P. P error ∧ P eof ∧ (∀a0 a1. P a1 ⇒ P (cons a0 a1)) ⇒ ∀x. P x
⊦ ∀p e s.
strongInverse p e ⇒
case toList (parseStream p s) of
none → ⊤
| some l → toList s = some (concat (map e l))
⊦ ∀p s.
parse p s = none ∨
∃b s'. parse p s = some (b, s') ∧ isProperSuffix s' s
⊦ ∀f p g e.
inverse p e ∧ (∀b. f (g b) = b) ⇒ inverse (map f p) (λc. e (g c))
⊦ ∀p.
isParser p ⇔
∀x xs. case p x xs of none → ⊤ | some (y, xs') → isSuffix xs' xs
⊦ ∀f p g e.
inverse p e ∧ (∀b. f (g b) = some b) ⇒
inverse (partialMap f p) (λc. e (g c))
⊦ ∀p a s.
destParser p a s = none ∨
∃b s'. destParser p a s = some (b, s') ∧ isSuffix s' s
⊦ ∀p a s.
isParser p ⇒ p a s = none ∨ ∃b s'. p a s = some (b, s') ∧ isSuffix s' s
⊦ ∀f0 f1 f2.
∃fn.
fn error = f0 ∧ fn eof = f1 ∧
∀a0 a1. fn (cons a0 a1) = f2 a0 a1 (fn a1)
⊦ ∀f p s.
parse (map f p) s =
case parse p s of none → none | some (b, s') → some (f b, s')
⊦ ∀p e.
strongInverse p e ⇔
inverse p e ∧ ∀s x s'. parse p s = some (x, s') ⇒ s = append (e x) s'
⊦ ∀p a s.
parseStream p (cons a s) =
case destParser p a s of
none → error
| some (b, s') → cons b (parseStream p s')
⊦ ∀pb pc eb ec.
inverse pb eb ∧ inverse pc ec ⇒
inverse (parsePair pb pc) (λ(b, c). eb b @ ec c)
⊦ ∀pb pc eb ec.
strongInverse pb eb ∧ strongInverse pc ec ⇒
strongInverse (parsePair pb pc) (λ(b, c). eb b @ ec c)
⊦ ∀f p a s.
destParser (map f p) a s =
case destParser p a s of none → none | some (b, s') → some (f b, s')
⊦ ∀f p s.
parse (partialMap f p) s =
case parse p s of
none → none
| some (b, s') → case f b of none → none | some c → some (c, s')
⊦ ∀h.
(∀f g s. (∀s'. isProperSuffix s' s ⇒ f s' = g s') ⇒ h f s = h g s) ⇒
∃f. ∀s. f s = h f s
⊦ ∀f p a s.
partialMap.pf f p a s =
case destParser p a s of
none → none
| some (b, s') → case f b of none → none | some c → some (c, s')
⊦ ∀d r.
fromRandom d r =
let (l, r') ← fromRandom d r in
let (b, r'') ← Probability.Random.bit r' in
append l (if b then error else eof), r''
⊦ ∀f e.
(∀b. f (e b) = some b) ∧
(∀a1 a2 b. f a1 = some b ∧ f a2 = some b ⇒ a1 = a2) ⇒
strongInverse (parseOption f) (λb. e b :: [])
⊦ ∀f p g e.
strongInverse p e ∧ (∀b. f (g b) = b) ∧
(∀b1 b2 c. f b1 = c ∧ f b2 = c ⇒ b1 = b2) ⇒
strongInverse (map f p) (λc. e (g c))
⊦ ∀pb pc s.
parse (parsePair pb pc) s =
case parse pb s of
none → none
| some (b, s') →
case parse pc s' of
none → none
| some (c, s'') → some ((b, c), s'')
⊦ ∀f p g e.
strongInverse p e ∧ (∀b. f (g b) = some b) ∧
(∀b1 b2 c. f b1 = some c ∧ f b2 = some c ⇒ b1 = b2) ⇒
strongInverse (partialMap f p) (λc. e (g c))
⊦ ∀pb pc a s.
parsePair.pbc pb pc a s =
case destParser pb a s of
none → none
| some (b, s') →
case parse pc s' of
none → none
| some (c, s'') → some ((b, c), s'')
Input Type Operators
- →
- bool
- Data
- List
- list
- Option
- option
- Pair
- ×
- List
- Number
- Natural
- natural
- Natural
- Probability
- Random
- Probability.Random.random
- Random
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- cond
- ⊥
- ⊤
- List
- ::
- @
- []
- concat
- fromRandom
- length
- map
- Option
- case
- none
- some
- Pair
- ,
- Bool
- Function
- id
- Number
- Natural
- *
- +
- <
- ≤
- ↑
- bit0
- bit1
- even
- suc
- zero
- Natural
- Probability
- Random
- Probability.Random.bit
- Random
- Relation
- irreflexive
- measure
- subrelation
- wellFounded
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ length [] = 0
⊦ bit0 0 = 0
⊦ concat [] = []
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ∀n. n ≤ n
⊦ ∀m. wellFounded (measure m)
⊦ ⊥ ⇔ ∀p. p
⊦ ∀x. id x = x
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀a. ∃!x. x = a
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀a'. ¬(none = some a')
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊥ ⇔ ⊥
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀l. [] @ l = l
⊦ ∀f. map f [] = []
⊦ ∀r. wellFounded r ⇒ irreflexive r
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. (t ⇔ ⊥) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. even (2 * n)
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀m. m ↑ 0 = 1
⊦ ∀x. case none some x = x
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀n. even (suc n) ⇔ ¬even n
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀b f. case b f none = b
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀f y. (let x ← y in f x) = f y
⊦ ∀xy. ∃x y. xy = (x, y)
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀r x. irreflexive r ⇒ ¬r x x
⊦ ∀n. 2 * n = n + n
⊦ ∀h t. length (h :: t) = suc (length t)
⊦ ∀m n. ¬(m < n ∧ n ≤ m)
⊦ ∀m n. ¬(m ≤ n ∧ n < m)
⊦ ∀m n. m < suc n ⇔ m ≤ n
⊦ ∀m n. suc m ≤ n ⇔ m < n
⊦ ∀x. x = none ∨ ∃a. x = some a
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀p. ¬(∀x. p x) ⇔ ∃x. ¬p x
⊦ ∀p. ¬(∃x. p x) ⇔ ∀x. ¬p x
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀a a'. some a = some a' ⇔ a = a'
⊦ ∀t1 t2. ¬(t1 ⇒ t2) ⇔ t1 ∧ ¬t2
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. suc m ≤ suc n ⇔ m ≤ n
⊦ ∀h t. concat (h :: t) = h @ concat t
⊦ ∀r s. subrelation r s ∧ wellFounded s ⇒ wellFounded r
⊦ ∀b f a. case b f (some a) = f a
⊦ ∀t1 t2. ¬(t1 ∧ t2) ⇔ ¬t1 ∨ ¬t2
⊦ ∀m n. even (m * n) ⇔ even m ∨ even n
⊦ ∀m n. even (m + n) ⇔ even m ⇔ even n
⊦ ∀m n. m ↑ suc n = m * m ↑ n
⊦ ∀l. l = [] ∨ ∃h t. l = h :: t
⊦ ∀f g. (∀x. f x = g x) ⇔ f = g
⊦ ∀p a. (∃x. a = x ∧ p x) ⇔ p a
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. m ≤ n ⇔ m < n ∨ m = n
⊦ ∀m n. m ≤ n ∧ n ≤ m ⇔ m = n
⊦ ∀f. ∃fn. ∀x y. fn (x, y) = f x y
⊦ ∀m x y. measure m x y ⇔ m x < m y
⊦ ∀p q. (∀x. p ∨ q x) ⇔ p ∨ ∀x. q x
⊦ ∀p q. (∃x. p ∧ q x) ⇔ p ∧ ∃x. q x
⊦ ∀p q. p ∧ (∀x. q x) ⇔ ∀x. p ∧ q x
⊦ ∀p q. p ∧ (∃x. q x) ⇔ ∃x. p ∧ q x
⊦ ∀p q. p ∨ (∀x. q x) ⇔ ∀x. p ∨ q x
⊦ ∀p q. p ∨ (∃x. q x) ⇔ ∃x. p ∨ q x
⊦ ∀p q. (∃x. p x) ∧ q ⇔ ∃x. p x ∧ q
⊦ ∀p q. (∃x. p x) ∨ q ⇔ ∃x. p x ∨ q
⊦ ∀t1 t2 t3. (t1 ∧ t2) ∧ t3 ⇔ t1 ∧ t2 ∧ t3
⊦ ∀t1 t2 t3. (t1 ∨ t2) ∨ t3 ⇔ t1 ∨ t2 ∨ t3
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + p = n + p ⇔ m = n
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀l h t. (h :: t) @ l = h :: t @ l
⊦ ∀p x. (∀y. p y ⇔ y = x) ⇒ (select) p = x
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀m n. m ≤ suc n ⇔ m = suc n ∨ m ≤ n
⊦ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
⊦ ∀f h t. map f (h :: t) = f h :: map f t
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀m n. m ↑ n = 0 ⇔ m = 0 ∧ ¬(n = 0)
⊦ ∀r s. subrelation r s ⇔ ∀x y. r x y ⇒ s x y
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀p q. (∀x. p x ∧ q x) ⇔ (∀x. p x) ∧ ∀x. q x
⊦ ∀p q. (∀x. p x ⇒ q x) ⇒ (∀x. p x) ⇒ ∀x. q x
⊦ ∀p q. (∀x. p x ⇒ q x) ⇒ (∃x. p x) ⇒ ∃x. q x
⊦ ∀p q. (∀x. p x) ∧ (∀x. q x) ⇔ ∀x. p x ∧ q x
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n
⊦ ∀p. p [] ∧ (∀h t. p t ⇒ p (h :: t)) ⇒ ∀l. p l
⊦ ∀m n p. m * n = m * p ⇔ m = 0 ∨ n = p
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * n < m * p ⇔ ¬(m = 0) ∧ n < p
⊦ ∀x y a b. (x, y) = (a, b) ⇔ x = a ∧ y = b
⊦ ∀p1 p2 q1 q2. (p1 ⇒ p2) ∧ (q1 ⇒ q2) ⇒ p1 ∧ q1 ⇒ p2 ∧ q2
⊦ ∀p1 p2 q1 q2. (p1 ⇒ p2) ∧ (q1 ⇒ q2) ⇒ p1 ∨ q1 ⇒ p2 ∨ q2
⊦ ∀p1 p2 q1 q2. (p2 ⇒ p1) ∧ (q1 ⇒ q2) ⇒ (p1 ⇒ q1) ⇒ p2 ⇒ q2
⊦ ∀p. (∀x. ∃!y. p x y) ⇔ ∃f. ∀x y. p x y ⇔ f x = y
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀b f. ∃fn. fn [] = b ∧ ∀h t. fn (h :: t) = f h t (fn t)
⊦ ∀p. (∃!x. p x) ⇔ (∃x. p x) ∧ ∀x x'. p x ∧ p x' ⇒ x = x'
⊦ ∀r. wellFounded r ⇔ ∀p. (∀x. (∀y. r y x ⇒ p y) ⇒ p x) ⇒ ∀x. p x