Package parser-all-thm: Properties of the whole stream parser

Information

nameparser-all-thm
version1.96
descriptionProperties of the whole stream parser
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2014-11-17
checksum533a1ec4ca9eb0d7870c2d38136abfbb96f115d9
requiresbool
function
list
natural
option
pair
parser-all-def
parser-comb
parser-stream
showData.Bool
Data.List
Data.Option
Data.Pair
Function
Number.Natural
Parser
Parser.Stream

Files

Theorems

p s. length (parseStream p s) length s

f p. parseStream (map f p) = map f parseStream p

p e l.
    inverse p e parseStream p (fromList (concat (map e l))) = fromList l

p e x s.
    inverse p e parseStream p (append (e x) s) = cons x (parseStream p s)

p e s.
    strongInverse p e
    case toList (parseStream p s) of
      none
    | some l toList s = some (concat (map e l))

External Type Operators

External Constants

Assumptions

length eof = 0

length error = 0

concat [] = []

toList error = none

t. t t

n. 0 n

n. n n

p. p

toList eof = some []

x. ¬isProperSuffix x x

(¬) = λp. p

t. (λx. t x) = t

() = λp. p = λx.

a. ¬(some a = none)

t. t

t. t t

t. t

s. append [] s = s

f. map f [] = []

f. map f eof = eof

f. map f error = error

p. parseStream p eof = eof

p. parseStream p error = error

p. parse p eof = none

p. parse p error = none

l. fromList l = append l eof

() = λp q. p q p

b f. case b f none = b

p x. p x p ((select) p)

x y. x = y y = x

a s. length (cons a s) = suc (length s)

x. x = none a. x = some a

() = λp q. (λf. f p q) = λf. f

() = λp. q. (x. p x q) q

a a'. some a = some a' a = a'

m n. suc m suc n m n

h t. concat (h :: t) = h @ concat t

x y. isSuffix x y length x length y

b f a. case b f (some a) = f a

f g x. (f g) x = f (g x)

l. l = [] h t. l = h :: t

f g. (x. f x = g x) f = g

() = λp q. r. (p r) (q r) r

s s'. isSuffix s s' s = s' isProperSuffix s s'

f. fn. a b. fn (a, b) = f a b

p a s. parse p (cons a s) = destParser p a s

h t s. append (h :: t) s = cons h (append t s)

m n p. m n n p m p

x y z. append (x @ y) z = append x (append y z)

a s.
    toList (cons a s) =
    case toList s of none none | some l some (a :: l)

l s.
    toList (append l s) =
    case toList s of none none | some ls some (l @ ls)

f h t. map f (h :: t) = f h :: map f t

f a s. map f (cons a s) = cons (f a) (map f s)

s a s'. isProperSuffix s (cons a s') s = s' isProperSuffix s s'

x. x = error x = eof a0 a1. x = cons a0 a1

p. (x. (y. isProperSuffix y x p y) p x) x. p x

p q. (x. p x q x) (x. p x) x. q x

p. p [] (h t. p t p (h :: t)) l. p l

a b a' b'. (a, b) = (a', b') a = a' b = b'

p e. inverse p e x s. parse p (append (e x) s) = some (x, s)

p s.
    parse p s = none
    b s'. parse p s = some (b, s') isProperSuffix s' s

p a s.
    destParser p a s = none
    b s'. destParser p a s = some (b, s') isSuffix s' s

p e.
    strongInverse p e
    inverse p e s x s'. parse p s = some (x, s') s = append (e x) s'

p a s.
    parseStream p (cons a s) =
    case destParser p a s of
      none error
    | some (b, s') cons b (parseStream p s')

f p a s.
    destParser (map f p) a s =
    case destParser p a s of none none | some (b, s') some (f b, s')