Package parser-comb: Theory of the basic parser combinators

Information

nameparser-comb
version1.0
descriptionTheory of the basic parser combinators
authorJoe Hurd <joe@gilith.com>
licenseMIT
show Data.Bool
Data.List
Data.Option
Data.Pair
Parser

Files

Defined Type Operator

Defined Constants

Theorems

isParser parseAll.pa

isParser parseNone.pn

parseAll = mkParser parseAll.pa

parseNone = mkParser parseNone.pn

destParser parseNone = parseNone.pn

p. isParser (destParser p)

inverse parseAll (λa. a :: [])

strongInverse parseAll (λa. a :: [])

s. parse parseNone s = none

pb pc. isParser (parsePair.pbc pb pc)

f p. isParser (partialMap.pf f p)

f. parseOption f = partialMap f parseAll

a s. parseNone.pn a s = none

a s. parseAll.pa a s = some (a, s)

pb pc. parsePair pb pc = mkParser (parsePair.pbc pb pc)

pb pc. destParser (parsePair pb pc) = parsePair.pbc pb pc

f p. partialMap f p = mkParser (partialMap.pf f p)

f p. destParser (partialMap f p) = partialMap.pf f p

parse parseAll = Stream.case none none (λa s. some (a, s))

p. parseSome p = parseOption (λa. if p a then some a else none)

f p. map f p = partialMap (λb. some (f b)) p

(a. mkParser (destParser a) = a)
  r. isParser r destParser (mkParser r) = r

p.
    parse (parseSome p) =
    Stream.case none none (λa s. if p a then some (a, s) else none)

f.
    parse (parseOption f) =
    Stream.case none none (λa s. case none (λb. some (b, s)) (f a))

p a s. destParser (parseSome p) a s = if p a then some (a, s) else none

f a s.
    destParser (parseOption f) a s = case none (λb. some (b, s)) (f a)

f e. (b. f (e b) = some b) inverse (parseOption f) (λb. e b :: [])

p a s b s'. destParser p a s = some (b, s') Stream.isSuffix s' s

p e. inverse p e x s. parse p (Stream.append (e x) s) = some (x, s)

p s.
    parse p s = none
    b s'. parse p s = some (b, s') Stream.isProperSuffix s' s

f p g e.
    inverse p e (b. f (g b) = b) inverse (map f p) (λc. e (g c))

p.
    isParser p x xs. case T (λ(y, xs'). Stream.isSuffix xs' xs) (p x xs)

f p g e.
    inverse p e (b. f (g b) = some b)
    inverse (partialMap f p) (λc. e (g c))

p a s.
    destParser p a s = none
    b s'. destParser p a s = some (b, s') Stream.isSuffix s' s

p a s.
    isParser p
    p a s = none b s'. p a s = some (b, s') Stream.isSuffix s' s

(p. parse p Stream.error = none) (p. parse p Stream.eof = none)
  p a s. parse p (Stream.stream a s) = destParser p a s

f p s.
    parse (map f p) s = case none (λ(b, s'). some (f b, s')) (parse p s)

p e.
    strongInverse p e
    inverse p e
    s x s'. parse p s = some (x, s') s = Stream.append (e x) s'

pb pc eb ec.
    inverse pb eb inverse pc ec
    inverse (parsePair pb pc) (λ(b, c). eb b @ ec c)

pb pc eb ec.
    strongInverse pb eb strongInverse pc ec
    strongInverse (parsePair pb pc) (λ(b, c). eb b @ ec c)

f p a s.
    destParser (map f p) a s =
    case none (λ(b, s'). some (f b, s')) (destParser p a s)

f p s.
    parse (partialMap f p) s =
    case none (λ(b, s'). case none (λc. some (c, s')) (f b)) (parse p s)

f p a s.
    partialMap.pf f p a s =
    case none (λ(b, s'). case none (λc. some (c, s')) (f b))
      (destParser p a s)

f e.
    (b. f (e b) = some b)
    (a1 a2 b. f a1 = some b f a2 = some b a1 = a2)
    strongInverse (parseOption f) (λb. e b :: [])

f p g e.
    strongInverse p e (b. f (g b) = b)
    (b1 b2 c. f b1 = c f b2 = c b1 = b2)
    strongInverse (map f p) (λc. e (g c))

pb pc s.
    parse (parsePair pb pc) s =
    case none
      (λ(b, s'). case none (λ(c, s''). some ((b, c), s'')) (parse pc s'))
      (parse pb s)

f p g e.
    strongInverse p e (b. f (g b) = some b)
    (b1 b2 c. f b1 = some c f b2 = some c b1 = b2)
    strongInverse (partialMap f p) (λc. e (g c))

pb pc a s.
    parsePair.pbc pb pc a s =
    case none
      (λ(b, s'). case none (λ(c, s''). some ((b, c), s'')) (parse pc s'))
      (destParser pb a s)

Input Type Operators

Input Constants

Assumptions

T

x. Stream.isSuffix x x

F p. p

(¬) = λp. p F

() = λP. P ((select) P)

t. (x. t) t

t. (λx. t x) = t

() = λP. P = λx. T

a'. ¬(none = some a')

x. x = x T

() = λp q. p q p

t. (t T) (t F)

P x. P x P ((select) P)

(¬T F) (¬F T)

p. x y. p = (x, y)

x y. Stream.isProperSuffix x y Stream.isSuffix x y

x. x = none a. x = some a

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

a a'. some a = some a' a = a'

f g. f = g x. f x = g x

() = λp q. r. (p r) (q r) r

s s'. Stream.isSuffix s s' s = s' Stream.isProperSuffix s s'

PAIR'. fn. a0 a1. fn (a0, a1) = PAIR' a0 a1

t1 t2 t3. t1 t2 t3 (t1 t2) t3

x y z. Stream.append (x @ y) z = Stream.append x (Stream.append y z)

x y z. Stream.isSuffix x y Stream.isSuffix y z Stream.isSuffix x z

t1 t2. (if T then t1 else t2) = t1 (if F then t1 else t2) = t2

(t. ¬¬t t) (¬T F) (¬F T)

x. x = Stream.error x = Stream.eof a0 a1. x = Stream.stream a0 a1

x y a b. (x, y) = (a, b) x = a y = b

a0 a1 a0' a1'.
    Stream.stream a0 a1 = Stream.stream a0' a1' a0 = a0' a1 = a1'

(b f. case b f none = b) b f a. case b f (some a) = f a

(s. Stream.append [] s = s)
  h t s. Stream.append (h :: t) s = Stream.stream h (Stream.append t s)

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

f0 f1 f2.
    fn.
      fn Stream.error = f0 fn Stream.eof = f1
      a0 a1. fn (Stream.stream a0 a1) = f2 a0 a1 (fn a1)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

(s. Stream.isProperSuffix s Stream.error F)
  (s. Stream.isProperSuffix s Stream.eof F)
  s a s'.
    Stream.isProperSuffix s (Stream.stream a s')
    s = s' Stream.isProperSuffix s s'

(e b f. Stream.case e b f Stream.error = e)
  (e b f. Stream.case e b f Stream.eof = b)
  e b f a s. Stream.case e b f (Stream.stream a s) = f a s

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)