Package parser-stream: Parse streams

Information

nameparser-stream
version1.61
descriptionParse streams
authorJoe Hurd <joe@gilith.com>
licenseMIT
requiresbool
function
list
natural
option
pair
relation
showData.Bool
Data.List
Data.Option
Data.Pair
Function
Number.Natural
Parser.Stream
Relation

Files

Defined Type Operator

Defined Constants

Theorems

wellFounded isProperSuffix

¬(error = eof)

length eof = 0

length error = 0

toList error = none

x. isSuffix x x

toList eof = some []

s. ¬isProperSuffix s eof

s. ¬isProperSuffix s error

x. ¬isProperSuffix x x

s. append [] s = s

l. fromList l = append l eof

l. length (fromList l) = length l

l. toList (fromList l) = some l

a0' a1'. ¬(eof = cons a0' a1')

a0' a1'. ¬(error = cons a0' a1')

x y. isProperSuffix x y isSuffix x y

a s. length (cons a s) = suc (length s)

s. case toList s of none | some l length l = length s

e b f. case e b f eof = b

e b f. case e b f error = e

x y. isProperSuffix x y length x < length y

x y. isSuffix x y length x length y

l s. length (append l s) = length l + length s

s s'. isSuffix s s' s = s' isProperSuffix s s'

h t s. append (h :: t) s = cons h (append t s)

x y z. append (x @ y) z = append x (append y z)

x y z. isProperSuffix x y isProperSuffix y z isProperSuffix x z

x y z. isSuffix x y isSuffix y z isSuffix x z

a s.
    toList (cons a s) =
    case toList s of none none | some l some (a :: l)

l s.
    toList (append l s) =
    case toList s of none none | some ls some (l @ ls)

s a s'. isProperSuffix s (cons a s') s = s' isProperSuffix s s'

x. x = error x = eof a0 a1. x = cons a0 a1

p. (x. (y. isProperSuffix y x p y) p x) x. p x

e b f a s. case e b f (cons a s) = f a s

a0 a1 a0' a1'. cons a0 a1 = cons a0' a1' a0 = a0' a1 = a1'

P. P error P eof (a0 a1. P a1 P (cons a0 a1)) x. P x

f0 f1 f2.
    fn.
      fn error = f0 fn eof = f1
      a0 a1. fn (cons a0 a1) = f2 a0 a1 (fn a1)

h.
    (f g s. (s'. isProperSuffix s' s f s' = g s') h f s = h g s)
    f. s. f s = h f s

Input Type Operators

Input Constants

Assumptions

¬

¬

length [] = 0

bit0 0 = 0

t. t t

n. 0 n

n. n n

m. wellFounded (measure m)

p. p

x. id x = x

(¬) = λp. p

() = λp. p ((select) p)

a. ∃!x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

t. ¬¬t t

t. ( t) t

t. (t ) t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

n. ¬(suc n = 0)

n. 0 + n = n

m. m + 0 = m

l. [] @ l = l

r. wellFounded r irreflexive r

t. ( t) ¬t

t. (t ) ¬t

t. t ¬t

n. even (2 * n)

n. bit1 n = suc (bit0 n)

m. m 0 = 1

x. case none some x = x

() = λp q. p q p

t. (t ) (t )

n. even (suc n) ¬even n

m. m 0 m = 0

t1 t2. (if then t1 else t2) = t2

t1 t2. (if then t1 else t2) = t1

b f. case b f none = b

n. bit0 (suc n) = suc (suc (bit0 n))

f y. (let x y in f x) = f y

x y. x = y y = x

t1 t2. t1 t2 t2 t1

m n. m < n m n

r x. irreflexive r ¬r x x

n. 2 * n = n + n

h t. length (h :: t) = suc (length t)

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. m < suc n m n

m n. suc m n m < n

x. x = none a. x = some a

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

t1 t2. ¬(t1 t2) t1 ¬t2

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. suc m = suc n m = n

r s. subrelation r s wellFounded s wellFounded r

b f a. case b f (some a) = f a

t1 t2. ¬(t1 t2) ¬t1 ¬t2

m n. even (m * n) even m even n

m n. even (m + n) even m even n

m n. m suc n = m * m n

f g. (x. f x = g x) f = g

p a. (x. a = x p x) p a

() = λp q. r. (p r) (q r) r

m n. m n m < n m = n

m n. m n n m m = n

m x y. measure m x y m x < m y

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

t1 t2 t3. (t1 t2) t3 t1 t2 t3

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m * (n * p) = m * n * p

m n p. m + p = n + p m = n

l h t. (h :: t) @ l = h :: t @ l

p x. (y. p y y = x) (select) p = x

p. (x. y. p x y) y. x. p x (y x)

m n. m suc n m = suc n m n

m n. m * n = 0 m = 0 n = 0

p. p 0 (n. p n p (suc n)) n. p n

m n. m n = 0 m = 0 ¬(n = 0)

r s. subrelation r s x y. r x y s x y

(∃!) = λp. () p x y. p x p y x = y

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x) (x. q x) x. p x q x

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

p. p [] (h t. p t p (h :: t)) l. p l

m n p. m * n = m * p m = 0 n = p

m n p. m * n m * p m = 0 n p

m n p. m * n < m * p ¬(m = 0) n < p

x y a b. (x, y) = (a, b) x = a y = b

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p2 p1) (q1 q2) (p1 q1) p2 q2

p. (x. ∃!y. p x y) f. x y. p x y f x = y

p c x y. p (if c then x else y) (c p x) (¬c p y)

b f. fn. fn [] = b h t. fn (h :: t) = f h t (fn t)

p. (∃!x. p x) (x. p x) x x'. p x p x' x = x'

r. wellFounded r p. (x. (y. r y x p y) p x) x. p x