Package parser-stream-def: Definition of parse streams

Information

nameparser-stream-def
version1.36
descriptionDefinition of parse streams
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2011-11-28
requiresbool
natural
list
showData.Bool
Data.List
Data.Option
Data.Pair
Number.Natural
Parser.Stream
Relation

Files

Defined Type Operator

Defined Constants

Theorems

length eof = 0

length error = 0

toList error = none

toList eof = some []

s. ¬isProperSuffix s eof

s. ¬isProperSuffix s error

s. append [] s = s

l. fromList l = append l eof

a s. length (stream a s) = suc (length s)

e b f. case e b f eof = b

e b f. case e b f error = e

s s'. isSuffix s s' s = s' isProperSuffix s s'

h t s. append (h :: t) s = stream h (append t s)

a s.
    toList (stream a s) =
    case toList s of none none | some l some (a :: l)

s a s'. isProperSuffix s (stream a s') s = s' isProperSuffix s s'

e b f a s. case e b f (stream a s) = f a s

P. P error P eof (a0 a1. P a1 P (stream a0 a1)) x. P x

f0 f1 f2.
    fn.
      fn error = f0 fn eof = f1
      a0 a1. fn (stream a0 a1) = f2 a0 a1 (fn a1)

Input Type Operators

Input Constants

Assumptions

T

¬F T

¬T F

bit0 0 = 0

n. 0 n

F p. p

(¬) = λp. p F

() = λP. P ((select) P)

a. ∃!x. x = a

t. (x. t) t

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx. T

t. ¬¬t t

t. (T t) t

t. (t T) t

t. F t F

t. T t t

t. t T t

t. F t T

t. T t t

t. t T T

t. F t t

t. T t T

t. t F t

n. ¬(suc n = 0)

n. 0 + n = n

t. (F t) ¬t

t. (t F) ¬t

t. t F ¬t

n. even (2 * n)

n. bit1 n = suc (bit0 n)

m. exp m 0 = 1

() = λp q. p q p

t. (t T) (t F)

n. even (suc n) ¬even n

m. m 0 m = 0

t1 t2. (if F then t1 else t2) = t2

t1 t2. (if T then t1 else t2) = t1

n. bit0 (suc n) = suc (suc (bit0 n))

x y. x = y y = x

t1 t2. t1 t2 t2 t1

n. 2 * n = n + n

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. suc m n m < n

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. suc m = suc n m = n

m n. even (m * n) even m even n

m n. even (m + n) even m even n

m n. exp m (suc n) = m * exp m n

f g. (x. f x = g x) f = g

P a. (x. a = x P x) P a

() = λp q. r. (p r) (q r) r

m n. m n m < n m = n

m n. m n n m m = n

P Q. (x. P Q x) P x. Q x

t1 t2 t3. (t1 t2) t3 t1 t2 t3

m n p. m * (n * p) = m * n * p

m n p. m + p = n + p m = n

P x. (y. P y y = x) (select) P = x

P. (x. y. P x y) y. x. P x (y x)

m n. m suc n m = suc n m n

m n. m * n = 0 m = 0 n = 0

P. P 0 (n. P n P (suc n)) n. P n

m n. exp m n = 0 m = 0 ¬(n = 0)

(∃!) = λP. () P x y. P x P y x = y

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x Q x) (x. P x) x. Q x

P Q. (x. P x) (x. Q x) x. P x Q x

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

m n p. m * n = m * p m = 0 n = p

m n p. m * n m * p m = 0 n p

m n p. m * n < m * p ¬(m = 0) n < p

A B C D. (A B) (C D) A C B D

A B C D. (A B) (C D) A C B D

P. (x. ∃!y. P x y) f. x y. P x y f x = y

P c x y. P (if c then x else y) (c P x) (¬c P y)

NIL' CONS'.
    fn. fn [] = NIL' a0 a1. fn (a0 :: a1) = CONS' a0 a1 (fn a1)

P. (∃!x. P x) (x. P x) x x'. P x P x' x = x'