Package parser-stream-thm: parser-stream-thm

Information

nameparser-stream-thm
version1.5
descriptionparser-stream-thm
authorJoe Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2011-03-20
showData.Bool

Files

Theorems

Relation.wellFounded Parser.Stream.isProperSuffix

x. Parser.Stream.isSuffix x x

x. ¬Parser.Stream.isProperSuffix x x

l. Parser.Stream.length (Parser.Stream.fromList l) = Data.List.length l

l. Parser.Stream.toList (Parser.Stream.fromList l) = Data.Option.some l

x y. Parser.Stream.isProperSuffix x y Parser.Stream.isSuffix x y

s.
    Data.Option.case T (λl. Data.List.length l = Parser.Stream.length s)
      (Parser.Stream.toList s)

x y.
    Parser.Stream.isProperSuffix x y
    Number.Natural.< (Parser.Stream.length x) (Parser.Stream.length y)

x y.
    Parser.Stream.isSuffix x y
    Number.Natural.≤ (Parser.Stream.length x) (Parser.Stream.length y)

l s.
    Parser.Stream.length (Parser.Stream.append l s) =
    Number.Natural.+ (Data.List.length l) (Parser.Stream.length s)

x y z.
    Parser.Stream.append (Data.List.@ x y) z =
    Parser.Stream.append x (Parser.Stream.append y z)

x y z.
    Parser.Stream.isProperSuffix x y Parser.Stream.isProperSuffix y z
    Parser.Stream.isProperSuffix x z

x y z.
    Parser.Stream.isSuffix x y Parser.Stream.isSuffix y z
    Parser.Stream.isSuffix x z

l s.
    Parser.Stream.toList (Parser.Stream.append l s) =
    Data.Option.case Data.Option.none
      (λls. Data.Option.some (Data.List.@ l ls)) (Parser.Stream.toList s)

x.
    x = Parser.Stream.error x = Parser.Stream.eof
    a0 a1. x = Parser.Stream.stream a0 a1

p. (x. (y. Parser.Stream.isProperSuffix y x p y) p x) x. p x

a0 a1 a0' a1'.
    Parser.Stream.stream a0 a1 = Parser.Stream.stream a0' a1'
    a0 = a0' a1 = a1'

¬(Parser.Stream.error = Parser.Stream.eof)
  (a0' a1'. ¬(Parser.Stream.error = Parser.Stream.stream a0' a1'))
  a0' a1'. ¬(Parser.Stream.eof = Parser.Stream.stream a0' a1')

h.
    (f g s.
       (s'. Parser.Stream.isProperSuffix s' s f s' = g s')
       h f s = h g s) f. s. f s = h f s

Input Type Operators

Input Constants

Assumptions

T

n. Number.Natural.≤ Number.Numeral.zero n

n. Number.Natural.≤ n n

m. Relation.wellFounded (Relation.measure m)

F p. p

(¬) = λp. p F

t. (x. t) t

t. (λx. t x) = t

() = λP. P = λx. T

x. x = x T

n. ¬(Number.Natural.suc n = Number.Numeral.zero)

m. Number.Natural.+ m Number.Numeral.zero = m

n. Number.Numeral.bit0 n = Number.Natural.+ n n

l. Parser.Stream.fromList l = Parser.Stream.append l Parser.Stream.eof

x. Data.Option.case Data.Option.none Data.Option.some x = x

() = λp q. p q p

t. (t T) (t F)

n. Number.Numeral.bit1 n = Number.Natural.suc (Number.Natural.+ n n)

(¬T F) (¬F T)

t1 t2. t1 t2 t2 t1

m n. Number.Natural.< m n Number.Natural.≤ m n

<< x. Relation.wellFounded << ¬<< x x

n.
    Number.Natural.*
      (Number.Numeral.bit0 (Number.Numeral.bit1 Number.Numeral.zero)) n =
    Number.Natural.+ n n

m. Relation.measure m = λx y. Number.Natural.< (m x) (m y)

m n. ¬(Number.Natural.< m n Number.Natural.≤ n m)

m n. ¬(Number.Natural.≤ m n Number.Natural.< n m)

m n. Number.Natural.< m (Number.Natural.suc n) Number.Natural.≤ m n

m n. Number.Natural.≤ (Number.Natural.suc m) n Number.Natural.< m n

x. x = Data.Option.none a. x = Data.Option.some a

() = λp q. (λf. f p q) = λf. f T T

() = λP. q. (x. P x q) q

m n. Number.Natural.suc m = Number.Natural.suc n m = n

m n.
    Number.Natural.even (Number.Natural.* m n)
    Number.Natural.even m Number.Natural.even n

m n.
    Number.Natural.even (Number.Natural.+ m n) Number.Natural.even m
    Number.Natural.even n

() = λp q. r. (p r) (q r) r

(Number.Natural.even Number.Numeral.zero T)
  n. Number.Natural.even (Number.Natural.suc n) ¬Number.Natural.even n

m n. Number.Natural.≤ m n Number.Natural.< m n m = n

m n. Number.Natural.≤ m n Number.Natural.≤ n m m = n

s s'.
    Parser.Stream.isSuffix s s'
    s = s' Parser.Stream.isProperSuffix s s'

t1 t2 t3. t1 t2 t3 (t1 t2) t3

m n.
    Number.Natural.* m n = Number.Numeral.zero
    m = Number.Numeral.zero n = Number.Numeral.zero

Data.List.length Data.List.[] = Number.Numeral.zero
  h t.
    Data.List.length (Data.List.:: h t) =
    Number.Natural.suc (Data.List.length t)

(t. ¬¬t t) (¬T F) (¬F T)

P. P Data.List.[] (a0 a1. P a1 P (Data.List.:: a0 a1)) x. P x

<< <<<.
    (x y. << x y <<< x y) Relation.wellFounded <<<
    Relation.wellFounded <<

m n p.
    Number.Natural.* m n = Number.Natural.* m p
    m = Number.Numeral.zero n = p

m n p.
    Number.Natural.≤ (Number.Natural.* m n) (Number.Natural.* m p)
    m = Number.Numeral.zero Number.Natural.≤ n p

m n p.
    Number.Natural.< (Number.Natural.* m n) (Number.Natural.* m p)
    ¬(m = Number.Numeral.zero) Number.Natural.< n p

x y a b. Data.Pair., x y = Data.Pair., a b x = a y = b

Parser.Stream.length Parser.Stream.error = Number.Numeral.zero
  Parser.Stream.length Parser.Stream.eof = Number.Numeral.zero
  a s.
    Parser.Stream.length (Parser.Stream.stream a s) =
    Number.Natural.suc (Parser.Stream.length s)

P.
    P Parser.Stream.error P Parser.Stream.eof
    (a0 a1. P a1 P (Parser.Stream.stream a0 a1)) x. P x

<<.
    Relation.wellFounded << P. (x. (y. << y x P y) P x) x. P x

(b f. Data.Option.case b f Data.Option.none = b)
  b f a. Data.Option.case b f (Data.Option.some a) = f a

(l. Data.List.@ Data.List.[] l = l)
  h t l.
    Data.List.@ (Data.List.:: h t) l = Data.List.:: h (Data.List.@ t l)

(s. Parser.Stream.append Data.List.[] s = s)
  h t s.
    Parser.Stream.append (Data.List.:: h t) s =
    Parser.Stream.stream h (Parser.Stream.append t s)

(m. Number.Natural.≤ m Number.Numeral.zero m = Number.Numeral.zero)
  m n.
    Number.Natural.≤ m (Number.Natural.suc n)
    m = Number.Natural.suc n Number.Natural.≤ m n

t. ((T t) t) ((t T) t) ((F t) ¬t) ((t F) ¬t)

Parser.Stream.toList Parser.Stream.error = Data.Option.none
  Parser.Stream.toList Parser.Stream.eof = Data.Option.some Data.List.[]
  a s.
    Parser.Stream.toList (Parser.Stream.stream a s) =
    Data.Option.case Data.Option.none
      (λl. Data.Option.some (Data.List.:: a l)) (Parser.Stream.toList s)

f0 f1 f2.
    fn.
      fn Parser.Stream.error = f0 fn Parser.Stream.eof = f1
      a0 a1. fn (Parser.Stream.stream a0 a1) = f2 a0 a1 (fn a1)

t. (T t t) (t T t) (F t F) (t F F) (t t t)

t. (T t T) (t T T) (F t t) (t F t) (t t t)

t. (T t t) (t T T) (F t T) (t t T) (t F ¬t)

(s. Parser.Stream.isProperSuffix s Parser.Stream.error F)
  (s. Parser.Stream.isProperSuffix s Parser.Stream.eof F)
  s a s'.
    Parser.Stream.isProperSuffix s (Parser.Stream.stream a s')
    s = s' Parser.Stream.isProperSuffix s s'

<<.
    Relation.wellFounded <<
    H.
      (f g x. (z. << z x f z = g z) H f x = H g x)
      f. x. f x = H f x

(n. Number.Natural.+ Number.Numeral.zero n = n)
  (m. Number.Natural.+ m Number.Numeral.zero = m)
  (m n.
     Number.Natural.+ (Number.Natural.suc m) n =
     Number.Natural.suc (Number.Natural.+ m n))
  m n.
    Number.Natural.+ m (Number.Natural.suc n) =
    Number.Natural.suc (Number.Natural.+ m n)

p q r.
    (p q q p) ((p q) r p q r) (p q r q p r)
    (p p p) (p p q p q)