Package parser-stream-thm: Properties of parse streams

Information

nameparser-stream-thm
version1.90
descriptionProperties of parse streams
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2012-12-10
requiresbool
function
list
natural
option
pair
parser-stream-def
relation
showData.Bool
Data.List
Data.Option
Data.Pair
Function
Number.Natural
Parser.Stream
Relation

Files

Theorems

wellFounded isProperSuffix

¬(error = eof)

x. isSuffix x x

x. ¬isProperSuffix x x

l. length (fromList l) = length l

l. toList (fromList l) = some l

a0' a1'. ¬(eof = cons a0' a1')

a0' a1'. ¬(error = cons a0' a1')

x y. isProperSuffix x y isSuffix x y

s. case toList s of none | some l length l = length s

x y. isProperSuffix x y length x < length y

x y. isSuffix x y length x length y

l s. length (append l s) = length l + length s

f s. toList (map f s) = map (map f) (toList s)

x y z. append (x @ y) z = append x (append y z)

x y z. isProperSuffix x y isProperSuffix y z isProperSuffix x z

x y z. isSuffix x y isSuffix y z isSuffix x z

l s.
    toList (append l s) =
    case toList s of none none | some ls some (l @ ls)

x. x = error x = eof a0 a1. x = cons a0 a1

p. (x. (y. isProperSuffix y x p y) p x) x. p x

a0 a1 a0' a1'. cons a0 a1 = cons a0' a1' a0 = a0' a1 = a1'

h.
    (f g s. (s'. isProperSuffix s' s f s' = g s') h f s = h g s)
    f. s. f s = h f s

External Type Operators

External Constants

Assumptions

¬

¬

length [] = 0

bit0 0 = 0

length eof = 0

length error = 0

toList error = none

t. t t

n. 0 n

n. n n

m. wellFounded (measure m)

p. p

toList eof = some []

x. id x = x

s. ¬isProperSuffix s eof

s. ¬isProperSuffix s error

(¬) = λp. p

t. (x. t) t

t. (λx. t x) = t

() = λp. p = λx.

t. ¬¬t t

t. ( t) t

t. (t ) t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t t

t. t

t. t

n. ¬(suc n = 0)

n. 0 + n = n

m. m + 0 = m

l. [] @ l = l

s. append [] s = s

f. map f [] = []

f. map f none = none

f. map f eof = eof

f. map f error = error

r. wellFounded r irreflexive r

t. ( t) ¬t

t. (t ) ¬t

t. t ¬t

n. bit1 n = suc (bit0 n)

l. fromList l = append l eof

x. case none some x = x

() = λp q. p q p

t. (t ) (t )

n. even (suc n) ¬even n

m. m 0 m = 0

b f. case b f none = b

n. bit0 (suc n) = suc (suc (bit0 n))

f y. (let x y in f x) = f y

x y. x = y y = x

t1 t2. t1 t2 t2 t1

m n. m < n m n

r x. irreflexive r ¬r x x

n. 2 * n = n + n

h t. length (h :: t) = suc (length t)

a s. length (cons a s) = suc (length s)

m n. ¬(m < n n m)

m n. ¬(m n n < m)

m n. m < suc n m n

m n. suc m n m < n

x. x = none a. x = some a

f a. map f (some a) = some (f a)

() = λp q. (λf. f p q) = λf. f

p. ¬(x. p x) x. ¬p x

p. ¬(x. p x) x. ¬p x

() = λp. q. (x. p x q) q

t1 t2. ¬(t1 t2) t1 ¬t2

m n. m + suc n = suc (m + n)

m n. suc m + n = suc (m + n)

m n. suc m = suc n m = n

r s. subrelation r s wellFounded s wellFounded r

b f a. case b f (some a) = f a

t1 t2. ¬(t1 t2) ¬t1 ¬t2

m n. even (m * n) even m even n

m n. even (m + n) even m even n

() = λp q. r. (p r) (q r) r

m n. m n m < n m = n

m n. m n n m m = n

s s'. isSuffix s s' s = s' isProperSuffix s s'

m x y. measure m x y m x < m y

p q. (x. p q x) p x. q x

p q. (x. p q x) p x. q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. p (x. q x) x. p q x

p q. (x. p x) q x. p x q

p q. (x. p x) q x. p x q

h t s. append (h :: t) s = cons h (append t s)

t1 t2 t3. (t1 t2) t3 t1 t2 t3

t1 t2 t3. (t1 t2) t3 t1 t2 t3

l h t. (h :: t) @ l = h :: t @ l

p. (x. y. p x y) y. x. p x (y x)

m n. m suc n m = suc n m n

m n. m * n = 0 m = 0 n = 0

a s.
    toList (cons a s) =
    case toList s of none none | some l some (a :: l)

f h t. map f (h :: t) = f h :: map f t

f a s. map f (cons a s) = cons (f a) (map f s)

p. p 0 (n. p n p (suc n)) n. p n

r s. subrelation r s x y. r x y s x y

s a s'. isProperSuffix s (cons a s') s = s' isProperSuffix s s'

(∃!) = λp. () p x y. p x p y x = y

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p q. (x. p x q x) (x. p x) x. q x

p. p [] (h t. p t p (h :: t)) l. p l

m n p. m * n = m * p m = 0 n = p

m n p. m * n m * p m = 0 n p

m n p. m * n < m * p ¬(m = 0) n < p

a b a' b'. (a, b) = (a', b') a = a' b = b'

p1 p2 q1 q2. (p1 p2) (q1 q2) p1 q1 p2 q2

p1 p2 q1 q2. (p2 p1) (q1 q2) (p1 q1) p2 q2

P. P error P eof (a0 a1. P a1 P (cons a0 a1)) x. P x

r. wellFounded r p. (x. (y. r y x p y) p x) x. p x

f0 f1 f2.
    fn.
      fn error = f0 fn eof = f1
      a0 a1. fn (cons a0 a1) = f2 a0 a1 (fn a1)