Package real: The real numbers
Information
name | real |
version | 1.40 |
description | The real numbers |
author | Joe Hurd <joe@gilith.com> |
license | MIT |
requires | bool function natural pair set |
show | Data.Bool Data.Pair Function Number.Natural Number.Real Set |
Files
- Package tarball real-1.40.tgz
- Theory file real.thy (included in the package tarball)
Defined Type Operator
- Number
- Real
- real
- Real
Defined Constants
- Number
- Real
- *
- +
- -
- /
- <
- ≤
- >
- ≥
- ↑
- ~
- abs
- fromNatural
- inv
- max
- min
- sup
- Real
Theorems
⊦ ∀x. x ≤ x
⊦ ∀x. 0 + x = x
⊦ ∀x. x ↑ 0 = 1
⊦ ∀x. ~x + x = 0
⊦ ∀x. 1 * x = x
⊦ ∀x y. x > y ⇔ y < x
⊦ ∀x y. x ≥ y ⇔ y ≤ x
⊦ ∀x y. x * y = y * x
⊦ ∀x y. x + y = y + x
⊦ ∀x y. x ≤ y ∨ y ≤ x
⊦ ∀x y. x < y ⇔ ¬(y ≤ x)
⊦ ∀x y. x - y = x + ~y
⊦ ∀m n. fromNatural m = fromNatural n ⇔ m = n
⊦ ∀m n. fromNatural m ≤ fromNatural n ⇔ m ≤ n
⊦ ∀x. abs x = if 0 ≤ x then x else ~x
⊦ ∀m n. fromNatural m * fromNatural n = fromNatural (m * n)
⊦ ∀m n. fromNatural m + fromNatural n = fromNatural (m + n)
⊦ ∀x n. x ↑ suc n = x * x ↑ n
⊦ ∀m n. max m n = if m ≤ n then n else m
⊦ ∀m n. min m n = if m ≤ n then m else n
⊦ ∀x y. x ≤ y ∧ y ≤ x ⇔ x = y
⊦ ∀x y z. y ≤ z ⇒ x + y ≤ x + z
⊦ ∀x y z. x * (y * z) = x * y * z
⊦ ∀x y z. x + (y + z) = x + y + z
⊦ ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z
⊦ ∀x. ¬(x = 0) ⇒ inv x * x = 1
⊦ ∀x y. ¬(y = 0) ⇒ x / y = x * inv y
⊦ ∀x y z. x * (y + z) = x * y + x * z
⊦ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x * y
⊦ ∀s x. ¬(s = ∅) ∧ (∃m. ∀x. x ∈ s ⇒ x ≤ m) ∧ x ∈ s ⇒ x ≤ sup s
⊦ ∀s m.
¬(s = ∅) ∧ (∃m. ∀x. x ∈ s ⇒ x ≤ m) ∧ (∀x. x ∈ s ⇒ x ≤ m) ⇒ sup s ≤ m
⊦ ∀p.
(∃x. p x) ∧ (∃m. ∀x. p x ⇒ x ≤ m) ⇒
∃s. (∀x. p x ⇒ x ≤ s) ∧ ∀m. (∀x. p x ⇒ x ≤ m) ⇒ s ≤ m
Input Type Operators
- →
- bool
- Data
- Pair
- ×
- Pair
- Number
- Natural
- natural
- Natural
- Set
- set
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- cond
- ⊥
- ⊤
- Pair
- ,
- fst
- snd
- Bool
- Function
- id
- Number
- Natural
- *
- +
- <
- ≤
- bit0
- bit1
- distance
- div
- mod
- suc
- zero
- Natural
- Set
- ∅
- fromPredicate
- ∈
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ bit0 0 = 0
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ∀n. n ≤ n
⊦ ⊥ ⇔ ∀p. p
⊦ ∀x. id x = x
⊦ ∀t. t ∨ ¬t
⊦ ∀n. ¬(n < n)
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀a. ∃x. x = a
⊦ ∀t. (∀x. t) ⇔ t
⊦ ∀t. (∃x. t) ⇔ t
⊦ ∀t. (λx. t x) = t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (⊤ ⇔ t) ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊥ ∧ t ⇔ ⊥
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. t ∧ t ⇔ t
⊦ ∀t. ⊥ ⇒ t ⇔ ⊤
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀n. ¬(suc n = 0)
⊦ ∀m. m < 0 ⇔ ⊥
⊦ ∀n. 0 * n = 0
⊦ ∀m. m * 0 = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀n. distance 0 n = n
⊦ ∀n. distance n 0 = n
⊦ ∀n. distance n n = 0
⊦ ∀t. (⊥ ⇔ t) ⇔ ¬t
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀m. m * 1 = m
⊦ ∀m. 1 * m = m
⊦ ∀x. (select y. y = x) = x
⊦ ∀m n. m ≤ m + n
⊦ ∀m n. n ≤ m + n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀m. suc m = m + 1
⊦ ∀m. m ≤ 0 ⇔ m = 0
⊦ ∀xy. (fst xy, snd xy) = xy
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀x y. fst (x, y) = x
⊦ ∀x y. snd (x, y) = y
⊦ ∀p x. p x ⇒ p ((select) p)
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀f y. (let x ← y in f x) = f y
⊦ ∀x y. x = y ⇔ y = x
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀t1 t2. t1 ∨ t2 ⇔ t2 ∨ t1
⊦ ∀a b. (a ⇔ b) ⇒ a ⇒ b
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m + n = n + m
⊦ ∀m n. distance m n = distance n m
⊦ ∀m n. m = n ⇒ m ≤ n
⊦ ∀m n. m < n ⇒ m ≤ n
⊦ ∀m n. m ≤ n ∨ n ≤ m
⊦ ∀m n. distance m n ≤ m + n
⊦ ∀m n. distance m (m + n) = n
⊦ ∀m n. distance (m + n) m = n
⊦ ∀n. 2 * n = n + n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m n. ¬(m ≤ n) ⇔ n < m
⊦ ∀m n. suc m ≤ n ⇔ m < n
⊦ ∀s. (∃x. x ∈ s) ⇔ ¬(s = ∅)
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀p. ¬(∀x. p x) ⇔ ∃x. ¬p x
⊦ ∀p. ¬(∃x. p x) ⇔ ∀x. ¬p x
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. m + suc n = suc (m + n)
⊦ ∀m n. suc m + n = suc (m + n)
⊦ ∀m n. suc m = suc n ⇔ m = n
⊦ ∀m n. distance m n = 0 ⇔ m = n
⊦ ∀t1 t2. ¬(t1 ∨ t2) ⇔ ¬t1 ∧ ¬t2
⊦ ∀m n. m * suc n = m + m * n
⊦ ∀m n. suc m * n = m * n + n
⊦ ∀m n. ¬(n = 0) ⇒ m mod n < n
⊦ ∀P. (∀p. P p) ⇔ ∀p1 p2. P (p1, p2)
⊦ ∀m n. m ≤ n ⇔ ∃d. n = m + d
⊦ ∀a b. (∀n. a * n ≤ b) ⇔ a = 0
⊦ ∀f g. (∀x. f x = g x) ⇔ f = g
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀p. (∀x y. p x y) ⇔ ∀y x. p x y
⊦ ∀p q. p ∧ (∃x. q x) ⇔ ∃x. p ∧ q x
⊦ ∀p q. p ⇒ (∀x. q x) ⇔ ∀x. p ⇒ q x
⊦ ∀p q. p ⇒ (∃x. q x) ⇔ ∃x. p ⇒ q x
⊦ ∀p q. p ∨ (∃x. q x) ⇔ ∃x. p ∨ q x
⊦ ∀m n. m < suc n ⇔ m = n ∨ m < n
⊦ ∀p q. (∀x. p x ∨ q) ⇔ (∀x. p x) ∨ q
⊦ ∀p q. (∃x. p x) ∧ q ⇔ ∃x. p x ∧ q
⊦ ∀p q. (∀x. p x) ∨ q ⇔ ∀x. p x ∨ q
⊦ ∀p q. (∃x. p x) ∨ q ⇔ ∃x. p x ∨ q
⊦ ∀p q r. p ⇒ q ⇒ r ⇔ p ∧ q ⇒ r
⊦ ∀t1 t2 t3. (t1 ∧ t2) ∧ t3 ⇔ t1 ∧ t2 ∧ t3
⊦ ∀t1 t2 t3. (t1 ∨ t2) ∨ t3 ⇔ t1 ∨ t2 ∨ t3
⊦ ∀m n p. distance m p ≤ distance m n + distance n p
⊦ ∀m n p. m * (n * p) = n * (m * p)
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + (n + p) = m + n + p
⊦ ∀m n p. m + n = m + p ⇔ n = p
⊦ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
⊦ ∀m n p. m + p ≤ n + p ⇔ m ≤ n
⊦ ∀m n p. distance (m + n) (m + p) = distance n p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀p x. (∀y. p y ⇔ y = x) ⇒ (select) p = x
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀m n. m ≤ suc n ⇔ m = suc n ∨ m ≤ n
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀p x. x ∈ { y. y | p y } ⇔ p x
⊦ ∀p q r. p ⇒ q ∧ r ⇔ (p ⇒ q) ∧ (p ⇒ r)
⊦ ∀m n p. m * (n + p) = m * n + m * p
⊦ ∀m n p. m * distance n p = distance (m * n) (m * p)
⊦ ∀m n p. (m + n) * p = m * p + n * p
⊦ ∀p m n. distance m n * p = distance (m * p) (n * p)
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀p q. (∀x. p x ∧ q x) ⇔ (∀x. p x) ∧ ∀x. q x
⊦ ∀p q. (∃x. p x ∨ q x) ⇔ (∃x. p x) ∨ ∃x. q x
⊦ ∀p q. (∀x. p x) ∧ (∀x. q x) ⇔ ∀x. p x ∧ q x
⊦ ∀p q. (∃x. p x) ∨ (∃x. q x) ⇔ ∃x. p x ∨ q x
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n
⊦ ∀a b c. (∀n. a * n ≤ b * n + c) ⇔ a ≤ b
⊦ ∀m n. ¬(n = 0) ⇒ (m div n) * n + m mod n = m
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * p ≤ n * p ⇔ m ≤ n ∨ p = 0
⊦ ∀x y a b. (x, y) = (a, b) ⇔ x = a ∧ y = b
⊦ ∀m n p q. distance m p ≤ distance (m + n) (p + q) + distance n q
⊦ ∀m n p q. m < p ∧ n < q ⇒ m + n < p + q
⊦ ∀m n p q. m ≤ n ∧ p ≤ q ⇒ m * p ≤ n * q
⊦ ∀m n p q. m ≤ p ∧ n ≤ q ⇒ m + n ≤ p + q
⊦ ∀m n p q. distance (m + n) (p + q) ≤ distance m p + distance n q
⊦ ∀m n p. distance m n ≤ p ⇔ m ≤ n + p ∧ n ≤ m + p
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀p. (∃b. ∀n. p n ≤ b) ⇔ ∃a b. ∀n. n * p n ≤ a * n + b
⊦ ∀P. (∃x. P x) ∧ (∃M. ∀x. P x ⇒ x ≤ M) ⇔ ∃m. P m ∧ ∀x. P x ⇒ x ≤ m
⊦ ∀p q. (∃b. ∀i. p i ≤ q i + b) ⇔ ∃b n. ∀i. n ≤ i ⇒ p i ≤ q i + b
⊦ ∀m n p q r s.
distance m n ≤ r ∧ distance p q ≤ s ⇒
distance m p ≤ distance n q + (r + s)
⊦ ∀p a b.
p 0 0 = 0 ∧ (∀m n. p m n ≤ a * (m + n) + b) ⇒
∃c. ∀m n. p m n ≤ c * (m + n)